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Question 1

(a) Consider each pair of temporal logic formulae below. Identify which logic each formula is

written in and then show whether the pair are equivalent or not.

(i) (□a ∨□b) → ♢(a ∧ b) and □(¬a ∨ ¬b) → (♢¬a ∧ ♢¬b)

(ii) ∀□(p→ ∀♢∀⃝ q) and ∀□(p→ ♢⃝ q)

(i) Both of the formulae are in LTL. They are equivalent. Proof:

(□a ∨□b) → ♢(a ∧ b) =

= ¬(□a ∨□b) ∨ ♢(a ∧ b) =

= (¬□a ∧ ¬□b) ∨ ♢(a ∧ b) =

= (♢¬a ∧ ♢¬b) ∨ ♢(a ∧ b) =

= ♢(a ∧ b) ∨ (♢¬a ∧ ♢¬b) =

= ♢¬(¬a ∨ ¬b) ∨ (♢¬a ∧ ♢¬b) =

= ¬□(¬a ∨ ¬b) ∨ (♢¬a ∧ ♢¬b) =

=□(¬a ∨ ¬b) → (♢¬a ∧ ♢¬b)
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(ii) The first formula is in CTL, while the second is in CTL*. They are not equivalent. Proof:

Consider the following LTS M:

s0

{p}

s1

∅

s2

∅

s3

{q}

s4

{q}

s5

∅

Now, observe that M ⊨ ∀□(p→ ♢⃝ q) since there are two paths starting at s0:

• π1 = s0s1s2s3s3s3...

• π2 = s0s1s4s5s5s5...

• trace(π1) = {p}∅∅ {q} {q} {q} ...

• trace(π2) = {p}∅ {q}∅∅∅ ...

π1 ⊨ p→ ♢⃝ q since for all k ≥ 1 we have that π1[k...] ̸ ⊨ p, and for k = 0 there exists k′ = 2 such that

π1[0...][k
′...] ⊨⃝q since π1[0...][2...][1...] ⊨ q. Similarly, π2 ⊨ p→ ♢⃝ q since for all k ≥ 1 we have that

π2[k...] ̸ ⊨ p, and for k = 0 there exists k′ = 1 such that π1[0...][k′...] ⊨⃝q since π1[0...][1...][1...] ⊨ q.

Thus M ⊨ ∀□(p→ ♢⃝ q).

However, M ̸ ⊨ ∀□(p→ ∀♢∀⃝q). Consider the path π2. π2 ⊨ p, therefore for the statement to hold we

also require that π2 ⊨ ∀♢∀⃝ q which implies that s0 ⊨ ∀♢∀⃝ q. Again, consider the path π2 starting

from s0. We need to find a k ∈ N such that π2[k...] ⊨ ∀⃝ q. The only way this could be possible

is with k = 1, as for all other values of k, π2[k...] ̸ ⊨⃝q. However, k = 1 also does not work, since

π2[1...] ⊨ ∀⃝ q implies that π2[1] = s1 ⊨ ∀⃝ q which is false since the path s1s2s3s3s3... ̸ ⊨⃝q. Thus

we have exhausted all possibilties and M ̸ ⊨ ∀□(p→ ∀♢∀⃝ q).

2



(b) Assuming that a, b, and c are atomic propositions, translate each of the following statements

into the temporal logic LTL.

(i) At most two of a, b, and c are ever true simultaneously.

(ii) If a and b are ever true simultaneously then, from that point on, at least one of them

is always true at any point.

(iii) c is true at exactly two distinct time steps and these are not consecutive.

(iv) Each of b and c are true infinitely often but the number of times that they are true

simultaneously is finite.

(i) □¬(a ∧ b ∧ c)

(ii) □((a ∧ b) → □(a ∨ b))

Note: “at least one of them is always true at any point” interpreted as “at any point, either a is true

or b is true” and not “either a is true for all points or b is true for all points”.

(iii) (¬c) U (c ∧⃝(¬c ∧ (¬c) U (c ∧⃝□¬c)))

(iv) □♢b ∧□♢c ∧ ♢□¬(b ∧ c)
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(c) For each of the properties expressed in part (b), state whether or not it belongs to these

linear-time property classes: invariant, safety, liveness.

Property Invariant? Safety? Liveness?

i
Yes Yes No

ii
No Yes No

iii
No No No

iv
No No Yes

Explanation:

Firstly, recall from the lectures that all invariants are safety properties. In addition, safety and live-

ness properties are disjoint, since safety properties have bad prefixes and liveness properties have the

property that any finite prefix can be extended to a word satisfying the liveness property.

Property (i) is an invariant since it checks whether a certain property is true in each individual state

(and doesn’t need information about other states to determine that). Since all invariants are also

safety properties, it is also a safety property. Thus it is also not a liveness property.

Property (ii) is not an invariant as it talks about more than one state. It is a safety property as any

violation has a bad prefix (a trace containing {a, b} followed by ∅ at some point). Thus it is also not

a liveness property.

Property (iii) is not an invariant since it talks about more than one state. It is not a safety property

since the trace {c} ∅ ∅ ∅... violates it but does not have a bad prefix, since any of its prefixes can

be extended to a satisfying trace by adding {c} followed by an infinite sequence of ∅. It is also not a

liveness property, since the prefix {c} {c}∅ cannot be extended to a satisfying trace since it is a bad

prefix containing two consecutive cs.

Property (iv) is a liveness property as any finite prefix can be extended to a satisfying word by adding

{b} and {c} but not {b, c} to the prefix infinitely many times. It is thus not an invariant or a safety

property.
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Question 2

(a) Illustrate the application of the CTL model checking algorithm to determine whether the

LTS M below satisfies the formula:

ϕ = ∀♢¬∃[¬d U ∀⃝ a]

s0

{a, b, c}

s1

{c, d}

s2

{c}

s3

{a, b, c}

The LTS M does not satisfy ϕ.

Step 1: convert the formula to ENF

ϕ = ∀♢¬∃[¬d U ∀⃝ a] =

= ¬∃□¬(¬∃[¬d U ∀⃝ a]) =

= ¬∃□∃[¬d U ∀⃝ a] =

= ¬∃□∃[¬d U ¬∃⃝ ¬a]

Step 2: recursively calculate the satisfying set of ϕ

First, note that our state space is S = {s0, s1, s2, s3}. We will calculate the satisfying set of ϕ by

working through each part of the formula inside-out.

• Sat(a) = {s0, s3}

• Sat(¬a) = S \ Sat(a) = {s1, s2}

• Sat(d) = {s1}

• Sat(¬d) = S \ Sat(d) = {s0, s2, s3}

• Sat(∃⃝ ¬a) = {s ∈ S|Post(s) ∩ {s1, s2} ≠ ∅} = {s0, s1, s2}

• Sat(¬∃⃝ ¬a) = S \ Sat(∃⃝ ¬a) = {s3}

• Sat(∃[¬d U ¬∃⃝ ¬a]) = CheckExistsUntil({s0, s2, s3}, {s3})

To apply the CheckExistsUntil algorithm, we set T0 = {s3} and repeatedly evaluate Ti = Ti−1 ∪

{s ∈ {s0, s2, s3}|Post(s) ∩ Ti−1 ̸= ∅} until we find a fixed point.

Doing this, we get T0 = {s3}, T1 = {s2, s3}, T2 = {s2, s3}. Thus Sat(∃[¬d U¬∃⃝¬a]) = {s2, s3}.
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• Sat(∃□∃[¬d U ¬∃⃝ ¬a]) = CheckExistsAlways({s2, s3})

To apply the CheckExistsAlways algorithm, we set T0 = {s2, s3} and repeatedly evaluate Ti =

Ti−1 ∩ {s ∈ {s2, s3}|Post(s) ∩ Ti−1 ̸= ∅} until we find a fixed point.

Doing this, we get T0 = {s2, s3}, T1 = {s2, s3}. Thus Sat(∃□∃[¬d U ¬∃⃝ ¬a]) = {s2, s3}.

• Sat(ϕ) = Sat(¬∃□∃[¬d U ¬∃⃝ ¬a]) = S \ Sat(∃□∃[¬d U ¬∃⃝ ¬a]) = {s0, s1}

Step 3: conclusion

Observe now that I = {s2} ̸⊆ {s0, s1} = Sat(ϕ). Hence M ̸ ⊨ ϕ.
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(b) Illustrate the application of the LTL model checking algorithm to determine whether the

same LTS M above satisfies the formula:

ψ = □(a→⃝(b→⃝(c ∧ ♢a)))

The LTS M does not satisfy the formula ψ.

Step 1: negate the formula

ψ = □(a→⃝(b→⃝(c ∧ ♢a))) =

= □(¬a ∨⃝(¬b ∨⃝(c ∧ ♢a)))

¬ψ = ¬□(¬a ∨⃝(¬b ∨⃝(c ∧ ♢a))) =

= ♢¬(¬a ∨⃝(¬b ∨⃝(c ∧ ♢a))) =

= ♢(a ∧⃝¬(¬b ∨⃝(c ∧ ♢a))) =

= ♢(a ∧⃝(b ∧⃝¬(c ∧ ♢a))) =

= ♢(a ∧⃝(b ∧⃝(¬c ∨ ¬♢a))) =

= ♢(a ∧⃝(b ∧⃝(¬c ∨□¬a)))

Step 2: Construct NBA for ¬ψ

q0 q1 q2

q3

q4q5

true

a b

¬c

true

¬a

¬a

¬b
a

c

atrue
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Step 3: Construct LTS-NBA product

s0q0 s1q0 s2q0 s3q0

s0q1 s1q5 s2q5 s3q1

s0q2 s0q5 s3q5 s3q2

s1q4

{accept}

s2q4

{accept}

Step 4: Finding an accepting cycle

We observe that we can find the following accepting cycle in the LTS-NBA product:

s2q0, s1q0, s0q1, s0q2, s1q4, s2q4, s1q4, s2q4, ...

where the states s1q4, s2q4 repeat forever. This cycle is highlighted in bold in the above figure.

Thus M ̸ ⊨ ψ.
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(c) Consider the temporal operator ♢[l,u], which imposes lower and upper bounds on the occur-

rence of the event.

π ⊨ ♢[l,u]ϕ iff ∃k ∈ N such that k ≥ l, k ≤ u, and π[k...] ⊨ ϕ

For each of the two logics, CTL and LTL: (i) explain whether adding ♢[l,u] increases expressivity;

(ii) describe an appropriate way to extend the existing model checking algorithm to incorporate

this operator and analyse the efficiency of the resulting algorithms.

LTL (i)

The operator does not increase expressivity in LTL.

For LTL, if u is an integer then we can rewrite the new operator as

♢[l,u]ϕ =⃝⃝ ...⃝︸ ︷︷ ︸
l

(ϕ ∨⃝(ϕ ∨⃝(...ϕ))︸ ︷︷ ︸
u−l

)

If u = ∞ then we can also rewrite this as

♢[l,∞]ϕ =⃝⃝ ...⃝︸ ︷︷ ︸
l

♢ϕ

LTL (ii)

In this case, it suffices to convert the given extended LTL formula into the standard LTL using the

above conversion and then running the LTL model checking algorithm. However, this may result in

a huge number of states in the NBA generated during the model checking phase, as there are LTL

formulas ϕ whose NBA is of size O(2|ϕ|).

An alternative way of constructing the NBA is to notice that

¬♢[l,u]ϕ =⃝⃝ ...⃝︸ ︷︷ ︸
l

(¬ϕ ∧⃝(¬ϕ ∧⃝(...ϕ))︸ ︷︷ ︸
u−l

)

For this expression alone, we can construct the following NBA:

s0 ... sl sl+1 ... su

sfail

true true ¬ϕ ¬ϕ ¬ϕ

ϕ
ϕ

ϕ

true

true
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However, if ϕ is not an atomic proposition but another LTL formula, the proper recognition for ¬ϕ

and ϕ needs to be inserted where the current ¬ϕ and ϕ transitions are, respectively. Thus there are

l + (l − u) · (|Aϕ|+|A¬ϕ|) states inserted into the NBA, which is exponential in the worst case. Thus,

with our construction, the time complexity of the model checking algorithm is exponential in l − u.

CTL (i)

The operator does not increase expressivity in CTL.

For CTL, if u is an integer then we can rewrite the new operator as

∀♢[l,u]ϕ = ∀⃝ ∀⃝ ...∀⃝︸ ︷︷ ︸
l

(ϕ ∨ ∀⃝ (ϕ ∨ ∀⃝ (...ϕ))︸ ︷︷ ︸
u−l

)

∃♢[l,u]ϕ = ∃⃝ ∃⃝ ...∃⃝︸ ︷︷ ︸
l

(ϕ ∨ ∃⃝ (ϕ ∨ ∃⃝ (...ϕ))︸ ︷︷ ︸
u−l

)

If u = ∞ then we can also rewrite this as

∀♢[l,∞]ϕ = ∀⃝ ∀⃝ ...∀⃝︸ ︷︷ ︸
l

∀♢ϕ

∃♢[l,∞]ϕ = ∃⃝ ∃⃝ ...∃⃝︸ ︷︷ ︸
l

∃♢ϕ

CTL (ii)

Again, we may convert any extended CTL formula to a standard CTL formula using the above rewriting

and run the CTL model checking algorithm.

In this case, doing this is straightforward, and we increase the size of ϕ by l + 3 · (u − l) + 1. Hence

the complexity of the model checking algorithm is linear in u.
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Question 3

Consider the following program.

while (true){

x := x mod n;

x := x+3 mod 2n;

}

(a) Fixing n = 2, show in detail how the transition relation representing this program is rep-

resented using each approach as: (i) a Binary Decision Diagram (BDD); and (ii) a symbolic

expression to be passed to a SAT or SMT solver, respectively.

Let us first construct the LTS for the program. We define the states of the LTS as pairs of variables.

The first variable, l0 or l1, determines where in the program we are. l0 means that the program is

about to execute (but has not yet executed) the first line x := x mod n;, while l1 indicates the same

for the second line x := x+3 mod 2n;. The second variable encodes the value of the program variable

x. As it is initially undefined, we let the value of x range from 0 to 2n− 1 in the states of the LTS.

The LTS for the program is:

l0, 0 l0, 1 l0, 2 l0, 3

l1, 0 l1, 1 l1, 2 l1, 3

We now relabel the states systematically for our encoding:

0 1 2 3

4 5 6 7

We now define the transitions of the LTS in a table as follows:
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Transition x1 x2 x3 x′1 x′2 x′3 Full expression

(0, 4) 0 0 0 1 0 0 000100

(1, 5) 0 0 1 1 0 1 001101

(2, 4) 0 1 0 1 0 0 010100

(3, 5) 0 1 1 1 0 1 011101

(4, 3) 1 0 0 0 1 1 100011

(5, 0) 1 0 1 0 0 0 101000

(6, 1) 1 1 0 0 0 1 110001

(7, 2) 1 1 1 0 1 0 111010
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(i) Let us convert this transition relation into a BDD.

x1

x′1 x′1 0

x2

x′2 x′2

x3 x3 x3 x3

0 1 0 1

0

x2

x′20

x3

x′3 x′3

0 1

By further simplifying the BDD, we arrive at the following:

x1

x′1 x′1

x′2

x3

x′3 x′3

x2

x′2 x′2

x3 x3

0 1
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This is the BDD representing the transition relation of the program.

(ii) Let us encode the transition relation table as a symbolic expression. We can do this by rewriting

the table as a logical proposition in the variables x1, x2, x3, x′1, x′2, x′3.

f→ =
(
¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x′1 ∧ ¬x′2 ∧ ¬x′3

)
∨

∨
(
¬x1 ∧ ¬x2 ∧ x3 ∧ x′1 ∧ ¬x′2 ∧ x′3

)
∨

∨
(
¬x1 ∧ x2 ∧ ¬x3 ∧ x′1 ∧ ¬x′2 ∧ ¬x′3

)
∨

∨
(
¬x1 ∧ x2 ∧ x3 ∧ x′1 ∧ ¬x′2 ∧ x′3

)
∨

∨
(
x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x′1 ∧ x′2 ∧ x′3

)
∨

∨
(
x1 ∧ ¬x2 ∧ x3 ∧ ¬x′1 ∧ ¬x′2 ∧ ¬x′3

)
∨

∨
(
x1 ∧ x2 ∧ ¬x3 ∧ ¬x′1 ∧ ¬x′2 ∧ x′3

)
∨

∨
(
x1 ∧ x2 ∧ x3 ∧ ¬x′1 ∧ x′2 ∧ ¬x′3

)
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(b) For each of the two approaches to model checking discussed above, give an example of a

formally specified property of the program that could be checked using that method and which

would be less suited to analysis with the other approach. Explain your reasoning in each case.

In this part, the value of n is fixed but not necessarily equal to 2.

(i) Property that can be checked with SMC but is less suited for analysis with BMC

The property ∃♢a where a is the statement “x = 1” can be easily checked (or disproved) by symbolic

model checking but is less suited for analysis with bounded model checking.

Checking the property with SMC can be done efficiently by doing a symbolic fixed point computation

of fSat(∃(true U a)).

However, for BMC, we would need to construct the logical proposition for f→ and apply it up to the

completeness threshold for all possible initial states. This takes exponential time, since we are not

giving the algorithm one single initial state, but are instead forced to check all of the possibilities.

(ii) Property that can be checked with BMC but is less suited for analysis with SMC

The property b∧∀□a where a is the statement “x < 2n−1” and b is the statement x = 0 can be easily

checked (or disproved) by bounded model checking but is less suited for analysis with symbolic model

checking.

To check the property, we need to construct the logical proposition for f→, which contains one clause

for each transition in the LTS of the program. With a fixed n, there are 2n states and thus 2n

transitions, which is easy to construct. To perform the BMC algorithm we start with the initial state

init = ¬x0 ∧ ...¬xk where k is the number of bits needed to encode the states and apply f→ up to the

completeness threshold.

However, to perform the SMC algorithm we would need to construct a BDD for the transition relation

and for a large expression, which suffers from state space explosion with large n.
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Question 4

Runtime verification is used to check the correctness of individual system executions and to detect

whether the violation or satisfaction of any LTL formula has happened as early as possible. This

method of verification considers only finite traces, as opposed to standard LTL where traces satisfying

a formula are always infinite.

For any LTL formula ϕ, the paper constructs a monitor FSM Mϕ which reads finite traces obtained

from the execution of a program and outputs one of the following symbols:

• ⊤, which indicates that every continuation of the prefix satisfies ϕ

• ⊥, which indicates that no continuation of the prefix satisfies ϕ

• ?, which indicates that some continuations satisfy ϕ and some do not.

Let us use the method described in the paper to construct such an FSM for the LTL formula ϕ =

□(a →⃝b). First, we construct Aϕ and A¬ϕ, which are the NBAs accepting all words satisfying ϕ

and all words falsifying ϕ, respectively:

q0 q1 q2

q3

¬a

a
b

a

¬a

¬b

true

Aϕ

q4 q5 q6

¬a

a

b

¬b

true

A¬ϕ

We then define Fϕ(q) = ⊤ iff L(Aϕ(q)) ̸= ∅, and construct an NFA Âϕ where a state q is accepting

iff Fϕ(q) = ⊤. We also do identically for ¬ϕ to arrive at the following NFAs:

q0 q1 q2

q3

¬a

a
b

a

¬a

¬b

true

Âϕ

q4 q5 q6

¬a

a

b

¬b

true

Â¬ϕ
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In general, we would now have to convert these NFAs Âϕ, Â¬ϕ into DFAs Ãϕ, Ã¬ϕ with a worst-case

exponential blow-up in states. However, in this example, we have already constructed our NBAs such

that the resulting NFAs have deterministic transition rules, and hence no conversion is necessary.

Thus Ãϕ = Âϕ, Ã¬ϕ = Â¬ϕ. Then, the minimised product of these two automata is our final monitor

automaton Mϕ:

q0q4

?

q1q5

?

q2q4

?

q3q6

⊥

¬a

a

b

a

¬a

¬b

true

Product automaton Āϕ = Ãϕ × Ã¬ϕ

s0

?

s1

?

s2

⊥

¬a

a

b

¬b

true

Unique minimised product automaton Mϕ

Using this automaton, we can input any finite-length trace u of a program execution and read the

value of [u ⊨ ϕ] from the resulting state, which is equal to one of {⊤,⊥, ? }. Note that this gives us an

efficient way of testing whether a prefix is good, bad, or neither, since according to Remark 3.2 from

the paper a prefix is good iff [u ⊨ ϕ] = ⊤, bad iff [u ⊨ ϕ] = ⊥, and neither otherwise. In particular, we

can observe that for this LTL formula ϕ = □(a→⃝b) there do not exist any good prefixes, since none

of the states output a ⊤ symbol. This aligns with our expectations, since any prefix can be extended

to a word that does not satisfy ϕ by adding an a followed by a ¬b. Similarly, we are able to observe

that a minimal bad prefix exists and is equal to {a} {¬b}.

In Definition 3.4, the paper defines that a property is monitorable iff it has no ugly prefix; that is, a

prefix that has no finite continuation that is either bad or good. It then shows that all safety and co-

safety properties are monitorable. Let us discuss the other two classes we have encountered during the

course: invariants and liveness properties. Since all invariants are safety properties, we conclude that

invariants are also monitorable. On the other hand, liveness properties may or may not be monitorable.

For example, the liveness property ψ1 = ♢a is monitorable, as any prefix can be extended to a good

prefix by adding an a to the end, which implies that there are no ugly prefixes. However, the liveness

property ψ2 = □♢a is not monitorable, as there do not exist any good or bad prefixes for the language

defined by ψ2. Proof: there are no bad prefixes by definition of a liveness property, and there are

no good prefixes since every prefix can be extended to an infinite word that does not satisfy ψ2 by

appending infinite ∅ to the end. Thus we can conclude that the empty prefix is an ugly prefix for ψ2

17



and thus the property is not monitorable.

On a theoretical level, this method of model checking may seem inefficient due to its worst-case time

complexity of O(22
|ϕ|
). Compare this to the other model checking algorithms we have seen during the

course: CTL model checking has a complexity of O(|M |·|ϕ|), which is linear in both LTS and formula

size, and LTL model checking has a complexity of O(|M |·2|ϕ|). However, the paper shows that in

practice, runtime verification has a smaller average complexity as the resultant monitor automaton can

be efficiently reduced. In fact, they observe that constructing the monitor automaton is generally more

efficient than trying to synchronise the two NFAs on-the-fly. In addition, doing runtime verification is

more efficient as it does not require one to model the whole system as an LTS beforehand. The method

only uses the LTL formula to construct its automaton and therefore can analyse programs of arbitrarily

large size just as fast. In general, useful LTL formulae are relatively small, and an exponential or even

double-exponential blow-up is acceptable. By contrast, traditional CTL or LTL model checking has

a complexity that is linear in the model size, which may become too large to handle if the program

suffers from state-space explosion, which is often the case with more complex systems.

However, the efficiency of runtime verification comes with the downside that it is not designed to

guarantee the correctness of a program. Other methods that consider finite state spaces of a program,

such as bounded model checking, guarantee that the execution of a program will be correct up to some

depth, and with a suitably large depth defined by the completeness threshold, it is able to guarantee

correctness of a whole program. However, runtime verification can only consider individual finite traces

of a program and cannot therefore be complete.

Due to its live monitoring and relative simplicity, runtime verification is often useful in live systems that

must be protected against undesirable conditions where model checking and the other methods studied

on the course are not useful. For example, it is used by the ContractLarva tool to monitor whether a

smart contract has been violated by a party and to trigger remedial behaviour, such as issuing fines,

as a result [1]. The violation of a contract is considered to be an accepted risk, and therefore a model

checker aiming to test the whole state space would always be able to find a violation of a desired

condition in the system, which is not useful information. However, with runtime verification, we get

insight on whether a violation actually happens during execution, and with the techniques outlined in

the present paper, we can guarantee that the violation is detected as early as possible.
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