
Distributed Processes, Types, and Programming

Sergey Ichtchenko

Mini-project, Michaelmas Term 2024

Question 1

(a) Give the free names and variables of the following processes.

(1) (ν d)(x(y).z⟨d⟩) | ! e(y).y⟨y⟩ | ! d(y).(ν c)y⟨c⟩

(2) c(z).(ν e)(ν a)e⟨z⟩ | ((ν a, b)y(x).b⟨x⟩ | b⟨a⟩ | e⟨x⟩)

(1) The free names are d and e. The free variables are x and z.

Explanation:

fn((ν d)(x(y).z⟨d⟩) | ! e(y).y⟨y⟩ | ! d(y).(ν c)y⟨c⟩) =
= fn((ν d)(x(y).z⟨d⟩)) ∪ fn(! e(y).y⟨y⟩) ∪ fn(! d(y).(ν c)y⟨c⟩)) =
= (fn(x(y).z⟨d⟩) \ {d}) ∪ fn(e) ∪ fn(y⟨y⟩) ∪ fn(d) ∪ (fn(y⟨c⟩) \ {c}) =
=∅ ∪ {e} ∪∅ ∪ {d} ∪∅ = {d, e}

fv((ν d)(x(y).z⟨d⟩) | ! e(y).y⟨y⟩ | ! d(y).(ν c)y⟨c⟩) =
= fv((ν d)(x(y).z⟨d⟩)) ∪ fv(! e(y).y⟨y⟩) ∪ fv(! d(y).(ν c)y⟨c⟩) =
= fv(x(y).z⟨d⟩) ∪ fv(e(y).y⟨y⟩) ∪ fv(d(y).(ν c)y⟨c⟩) =
= (fv(x) ∪ fv(z⟨d⟩) \ {y}) ∪ (fv(e) ∪ fv(y⟨y⟩) \ {y}) ∪ (fv(d) ∪ fv((ν c)y⟨c⟩) \ {y}) =
= ({x} ∪ {z} \ {y}) ∪ (∅ ∪ {y} \ {y}) ∪ (∅ ∪ {y} \ {y}) = {x, z}

(2) The free names are a, b, c, and e. The free variables are x and y.

Explanation:

fn(c(z).(ν e)(ν a)e⟨z⟩ | ((ν a, b)y(x).b⟨x⟩ | b⟨a⟩ | e⟨x⟩)) =
= fn(c(z).(ν e)(ν a)e⟨z⟩) ∪ fn((ν a, b)y(x).b⟨x⟩ | b⟨a⟩ | e⟨x⟩) =
= fn(c) ∪ (fn(e⟨z⟩) \ {a, e}) ∪ fn((ν a, b)y(x).b⟨x⟩) ∪ fn(b⟨a⟩) ∪ fn(e⟨x⟩) =
= {c} ∪ ({e} \ {a, e}) ∪ (fn(y(x).b⟨x⟩) \ {a, b}) ∪ {b, a} ∪ {e} =

= {c} ∪ ({e} \ {a, e}) ∪ ({b}) \ {a, b}) ∪ {b, a} ∪ {e} =

= {c} ∪∅ ∪∅ ∪ {b, a} ∪ {e} = {a, b, c, e}

1

fv(c(z).(ν e)(ν a)e⟨z⟩ | ((ν a, b)y(x).b⟨x⟩ | b⟨a⟩ | e⟨x⟩)) =
= fv(c(z).(ν e)(ν a)e⟨z⟩) ∪ fv((ν a, b)y(x).b⟨x⟩ | b⟨a⟩ | e⟨x⟩) =
= (fv(c) ∪ fv((ν e)(ν a)e⟨z⟩) \ {z}) ∪ fv((ν a, b)y(x).b⟨x⟩) ∪ fv(b⟨a⟩) ∪ fv(e⟨x⟩) =
= (∅ ∪ fv(e⟨z⟩) \ {z}) ∪ fv(y(x).b⟨x⟩) ∪∅ ∪ {x} =

= ({z} \ {z}) ∪ (fv(y) ∪ fv(b⟨x⟩) \ {x}) ∪ {x} =

=∅ ∪ ({y} ∪ {x} \ {x}) ∪ {x} = ({y} ∪∅) ∪ {x} = {x, y}

2

(b) This question is about the monadic asynchronous π-calculus.

(1) Define the size of the context C (denoted by size(C)) size : P ∪ {−} → N assuming

size(−) = 1.

(2) Assume P = a(x).(a(x).a⟨x⟩ | a⟨x⟩) and P ′ = a(x).(a⟨x⟩ | a⟨x⟩).

Are P and P ′ reduction congruent?

(3) Assume Q =! a(x).(a(x).a⟨x⟩ | a⟨x⟩) and Q′ =! a(x).(a⟨x⟩ | a⟨x⟩).

Are Q and Q′ reduction congruent?

(1) Let us define size(C) for a context C in a similar way to size(P) defined in the question:

size(−) = 1

size(C | P) = size(C) + size(P)

size(P | C) = size(P) + size(C)

size((ν a)C) = 1 + size(C)

(2) P and P ′ are not reduction congruent. Proof:

The context C = −|a⟨x⟩|a(x).a(x).b⟨x⟩ separates P and P ′. Observe that P can reduce to the following

expressions. Note: the numbers under the arrows indicate separate reduction paths. For example, after

the first line, there are two possible ways in which the reduction can go, indicated by arrow 1 and arrow

2. While arrow 1 terminates, there are again two possibilities after arrow 2, denoted with arrows 2.1

and 2.2.

C[P] = a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−−→
1

a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).b⟨x⟩

−−→
2

a(x).a⟨x⟩ | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→

−−→
2.1

a(x).a⟨x⟩ | a(x).b⟨x⟩

−−→
2.2

a⟨x⟩ | a(x).a(x).b⟨x⟩ −→ a(x).b⟨x⟩

These are all of the possible reductions. Note that none of the expressions in the reduction pathways

can be expressed in the form (ν c̃)(b⟨ṽ⟩ | R) where b /∈ c̃, and so C[P]′ ̸↓b for any process C[P]′ such

that C[P] −→∗ C[P]′. Thus C[P] ̸⇓b.

Now consider the other process:

C[P ′] = a(x).(a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−→ a⟨x⟩ | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−→ a⟨x⟩ | a(x).b⟨x⟩ −→
−→ b⟨x⟩ = C[P ′]′

These are not all of the possible reductions; however, we reach a process C[P ′]′ = b⟨x⟩ for which clearly

C[P ′]′ ↓b. Thus we have that C[P ′] −→∗ C[P ′]′ ↓b and thus C[P ′] ⇓b.

3

Hence, C[P] and C[P ′] have different weak barbs and are thus differentiated by the context C.

This context is of minimal size, since we require

1. One symbol (−) to put the expression into

2. One output a⟨x⟩ to remove the input a(x) from both processes

3. A new name b that is used for output, as both processes can output on a. This must be nested

in two input expressions a(x).a(x) as both processes can reduce at least once using an output

a⟨x⟩, while only process P ′ can do this twice.

Hence the minimum size of context C that differentiates P and P ′ is

size(− | a⟨x⟩ | a(x).a(x).b⟨x⟩) =
= size(−) + size(a⟨x⟩ | a(x).a(x).b⟨x⟩)) =
=1 + size(a⟨x⟩) + size(a(x).a(x).b⟨x⟩) =
=1 + 1 + 3 = 5

(3) Q and Q′ are not reduction congruent. Proof:

Again, the context C = − | a⟨x⟩ | a(x).a(x).b⟨x⟩ separates Q and Q′. For process Q:

C[Q] = ! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−−→
1

! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).b⟨x⟩

≡2 ! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−−→
2.1

! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).b⟨x⟩

−−→
2.2

! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).a⟨x⟩ | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→

−−−→
2.2.1

! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a(x).a⟨x⟩ | a(x).b⟨x⟩

−−−→
2.2.2

! a(x).(a(x).a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ = C[Q]

These are all the possible reduction paths, as expansion and reduction of the replication does not give

us any extra reductions in this case. Note that now, we either terminate or get back to the original

process C[Q]. None of the processes C[Q]′ that C[Q] can reduce to can be expressed in the form

(ν c̃)(b⟨ṽ⟩ | R) where b /∈ c̃, and so C[Q]′ ̸↓b for any process C[Q]′ such that C[Q] −→∗ C[Q]′. Thus

C[Q] ̸⇓b.

On the other hand, consider the following reductions for C[Q′]:

C[Q′] = ! a(x).(a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−→ ! a(x).(a⟨x⟩ | a⟨x⟩) | a(x).(a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−→ ! a(x).(a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a⟨x⟩ | a(x).a(x).b⟨x⟩ −→
−→ ! a(x).(a⟨x⟩ | a⟨x⟩) | a⟨x⟩ | a(x).b⟨x⟩ −→
−→ ! a(x).(a⟨x⟩ | a⟨x⟩) | b⟨x⟩ = C[Q′]′

4

We observe that C[Q′]′ = b⟨x⟩|R for some process R, which means that C[Q′]′ ↓b and thus C[Q′] ⇓b.

Hence the weak barbs of C[Q] and C[Q′] are different, and therefore C differentiates the two processes.

Again, C is of minimal size for the same reasons as in part (2) and thus the minimal size of a separating

context is 5.

5

(c) Assume two statements:

(i) if P ↓a for some a, then Q ↓a; and if Q ↓a for some a, then P ↓a

(ii) if P ⇓a for some a, then Q ⇓a; and if Q ⇓a for some a, then P ⇓a

Does (i) imply (ii)? Does (ii) imply (i)?

Both implications are false.

Counterexample for (i) =⇒ (ii):

Let P = b⟨x⟩ and Q = b⟨a⟩ | b(x).x⟨c⟩. Then P ↓b and Q ↓b with no other strong barbs; thus (i) holds.

Now, while P cannot be reduced, Q −→ a⟨c⟩. So Q ⇓a while P ̸⇓a. Hence (ii) does not hold and the

implication (i) =⇒ (ii) is false.

Counterexample for (ii) =⇒ (i):

First, recall that P ⇓a ⇐⇒ P −→∗ P ′ and P ′ ↓a. Since P −→∗ P for all P , P ↓a =⇒ P ⇓a.

Let P = a⟨b⟩ | a(x).x⟨c⟩ and Q = b⟨a⟩ | b(x).x⟨c⟩. Clearly P ↓a and Q ↓b, so also P ⇓a and Q ⇓b.

Now, P −→ b⟨c⟩ ↓b so P ⇓b and Q −→ a⟨c⟩ ↓a so Q ⇓a. Thus the processes have the same weak barbs

and (ii) holds. But then observe that P ̸↓b and Q ̸↓a. Hence (i) does not hold and the implication

(ii) =⇒ (i) is false.

6

Question 2

(a) Explain the reason (with an example) why the polyadic π-calculus must be typed to prove

the above encoding satisfies the criteria.

The polyadic π-calculus must be typed, as otherwise completeness does not hold. Proof:

Let P = a(x1, x2).0 | a⟨x⟩.0 be an untyped polyadic π-calculus formula. Then

JP K = a(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).0)) | (ν c)(a⟨c⟩ | c(y).(y⟨x⟩ | 0)) ≡
≡ (ν c)(a(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).0)) | a⟨c⟩ | c(y).(y⟨x⟩ | 0)) −→

−→ (ν c)((ν d)(c⟨d⟩ | d(x1).(c⟨d⟩ | d(x2).0)) | c(y).(y⟨x⟩ | 0)) ≡
≡ (ν c, d)(c⟨d⟩ | d(x1).(c⟨d⟩ | d(x2).0) | c(y).(y⟨x⟩ | 0)) = R

For completeness to hold, we would need to find a Q such that P −→ Q and an R′ such that R −→∗ R′

and R′ ∼= JQK. However, P ̸−→ as the identifier a sends and receives vectors of different arities. Thus

completeness does not hold.

7

(b) Assuming the polyadic π-calculus is typed, prove the above encoding satisfies the encodability

criteria.

Let us first fully define the encoding recursively:

J0K = 0

JP |QK = JP K | JQK
J(ν a)P K = (ν a)JP K

J!P K = ! JP K
Ju(x1, ..., xn).P K = u(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP K))))
Ju⟨v1, ..., vn⟩.P K = (ν c)(u⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP K))))

For this encoding, we must now prove 6 statements, which we will prove in this order:

1. Compositionality (homomorphic)

2. Closed under bijectional substitution

3. Soundness

4. Completeness

5. Barb preservation

6. Non-termination preservation

(1) Compositionality (homomorphic)

This statement requires the following four conditions to be true:

J0K = 0

JP |QK = JP K | JQK
J(ν a)P K = (ν a)JP K

J!P K = ! JP K

These are true by our above definition.

8

(2) Closed under bijectional substitution

Suppose that σ is a renaming for P . Let us prove the statement by induction on the structure of P .

Base case: if P = 0, then σ′ = σ works as J0σK = 0 = J0Kσ′.

Inductive hypothesis: Suppose P1 and P2 are such that the statement holds: for each i, if σi is a

renaming of Pi then there exists a renaming σ′
i such that JPiσiK = JPiKσ′

i.

Inductive steps:

Let us prove the statement for each of the 5 possible structures of P .

1. If P = (ν a)P1, then JPσK = J((ν a)P1)σK = J(ν a)P1σK = (ν a)JP1σK = (ν a)JP1Kσ′
1 = J(ν a)P1Kσ′

1 =

JP Kσ′
1. Taking σ′ = σ′

1 yields the result.

2. If P =!P1, then JPσK = J!P1σK = J!P1σK =! JP1σK =! JP1Kσ′
1 = J!P1Kσ′

1 = JP Kσ′
1. Taking

σ′ = σ′
1 yields the result.

3. If P = u(x1, ..., xn).P1, then JPσK = Ju(x1, ..., xn)σ.P1σK. For the term u(x1, ..., xn)σ, either u is

left unchanged by σ or it is renamed to some free name w.

• In the former case, Ju(x1, ..., xn)σ.P1σK =

= Ju(x1, ..., xn).P1σK = u(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP1σK)))) =

= u(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP1Kσ′
1)))) = JP Kσ′

1. The last step

holds as there are no other free names in the expression that σ′ could rename. Thus taking

σ′ = σ′
1 yields the result.

• In the latter case, Ju(x1, ..., xn)σ.P1σK = Jw(x1, ..., xn).P1σK =

= w(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP1σK)))) =

= w(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP1Kσ′
1)))) = JP Kσ′

1{w/u}, so taking

σ′ = σ′
1{w/u} yields the result.

4. If P = u⟨v1, ..., vn⟩.P1, then JPσK = Ju⟨v1, ..., vn⟩σ.P1σK. Again, we consider 2 cases: either u

left unchanged by σ or it is renamed to some free name w.

• In the former case, Ju⟨v1, ..., vn⟩σ.P1σK = Ju⟨v1, ..., vn⟩.P1σK =

= (ν c)(u⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1σK)))) =

= (ν c)(u⟨c⟩|c(y1).(y1⟨v1⟩|c(y2).(y2⟨v2⟩| ... |c(yn).(yn⟨vn⟩|JP1Kσ′
1)))) = JP Kσ′

1. Hence taking

σ′ = σ′
1 yields the result.

• In the latter case, Ju⟨v1, ..., vn⟩σ.P1σK = Jw⟨v1, ..., vn⟩.P1σK =

= (ν c)(w⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1σK)))) =

= (ν c)(w⟨c⟩|c(y1).(y1⟨v1⟩|c(y2).(y2⟨v2⟩| ... |c(yn).(yn⟨vn⟩|JP1Kσ′
1)))) = JP Kσ′

1{w/u}. Hence

taking σ′ = σ′
1{w/u} yields the result.

9

5. Finally, if P = P1 | P2, then JPσK = JP1σ | P2σK = JP1σK | JP2σK = JP1Kσ′
1 | JP2Kσ′

2. We can now

merge the two renamings, σ′
1 and σ′

2 as σ′ = σ′
1σ

′
2. One situation where these two renamings

could conflict would be if some free name a got renamed to some free name b by σ′
1 and to some

other free name c by σ′
2. However, this is impossible, as in all of our other inductive steps the

renaming has been systematically based on the renaming σ: a free name a got renamed to a free

name b only if {b/a} was in the renaming σ. Since σ cannot rename the same element to two

different elements, the renamings σ′
1 and σ′

2 will not clash. The only other case when a conflict

could occur is if σ′
1 renamed a free name a to b and σ′

2 left it alone (or vice versa). However, this

can also not happen, as our previous inductive rules always rename a free name a to b if {b/a}

is in σ and a appears in the expression. Thus the two renamings can be merged without issue.

Hence JP1Kσ′
1 | JP2Kσ′

2 = JP1Kσ′ | JP2Kσ′ = (JP1K | JP2K)σ′ = JP Kσ′.

Thus, by induction on the structure of P , the statement holds.

10

(3) Soundness

Suppose that P −→ Q. We must show that there exists an R such that JP K −→∗ R and R ∼= JQK.

Let us do this by induction on the possible reductions of P .

Induction hypothesis: Suppose that for some P1, P2 soundness holds: if Pi −→ P ′
i , then JPiK −→∗ Ri

and Ri
∼= JP ′

i K.

Inductive steps:

Let us prove the statement for each of the 4 possible reduction steps of P .

1. If P = P1 | P2 and P −→ P ′
1 | P2 = Q, then JP K = JP1K | JP2K −→∗ R1 | JP2K = R and

R ∼= JP ′
1K | JP2K = JQK.

2. If P = (ν a)P1 and P −→ (ν a)P ′
1 = Q, then JP K = (ν a)JP1K −→∗ (ν a)R1 = R and R ∼=

(ν a)JP ′
1K = JQK.

3. If P ≡ P1 −→ P ′
1 ≡ Q, then we know that (by induction on the structural congruence) JP K ∼=

JP1K. By definition of reduction congruence, JP1K −→ R1 =⇒ JP K −→∗ R such that R ∼= R1.

Since R1
∼= JQK and reduction congruence is an equivalence relation, we conclude that R ∼= JQK.

4. If P = u⟨v1, ..., vn⟩.P1 | u(x1, ..., xn).P2 and P −→ P1 | P2{v1, ..., vn/x1, ..., xn} = Q, then

JP K = (ν c)(u⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K)))) |
| u(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP2K)))) −→

−→ (ν c, d)(c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K))) |
| c⟨d⟩ | d(x1).(c⟨d⟩ | d(x2).(...(c⟨d⟩ | d(xn).JP2K)))) −→

−→ (ν c, d)(d⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K)) |
| d(x1).(c⟨d⟩ | d(x2).(...(c⟨d⟩ | d(xn).JP2K)))) −→

−→ (ν c, d)(c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K)) |
| c⟨d⟩ | d(x2).(...(c⟨d⟩ | d(xn).JP2{v1/x1}K))) −→

−→ (ν c, d)(d⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K) | d(x2).(...(c⟨d⟩ | d(xn).JP2{v1/x1}K))) −→
−→ (ν c, d)(... | c(yn).(yn⟨vn⟩ | JP1K) | ...(c⟨d⟩ | d(xn).JP2{v1, v2/x1, x2}K)) −→
−→ ... −→
−→ (ν c, d)(JP1K | JP2K{v1, ..., vn/x1, ..., xn}) ≡ JP1K | JP2K{v1, ..., vn/x1, ..., xn} = R

Note: to get to R, we used 2n+ 1 reduction steps. Now, R ∼= JQK and we are done.

Thus by induction on the reductions of P , soundness holds.

11

(4) Completeness

In order to prove completeness, we will need to do induction on the reductions of the encoding.

However, the same approach as for soundness will not work, as there does not always exist a reduction

of the original process for a single reduction of the encoded process. Thus, we will aim to show that

once one reduction step has been taken by the encoding, all future steps (up to a certain point) are

uniquely determined and we are able to find a path that satisfies the criterion.

Suppose JP K −→ R. We must show that P −→ Q and R −→∗ R′ and JQK ∼= R′.

Let us proceed by induction on the reductions of JP K.

Inductive hypothesis: Suppose that for P1, P2 we have that if JPiK −→ Ri then Pi −→ Qi and Ri −→∗ R′
i

and JQiK ∼= R′
i.

Inductive steps:

Let us prove the statement for each of the 4 possible reductions of JP K.

1. Suppose JP K = P3 |P4 and P3 |P4 −→ P ′
3 |P4 = R. Since P3 could reduce alone, we know from the

encoding rules that it must have been encoded from some process JP1K = P3. Hence also there

exists some P2 such that JP2K = P4. Thus JP K = JP1K | JP2K = JP1 | P2K and thus P = P1 | P2.

From the induction hypothesis, JP1K = P3 −→ P ′
3 = R1, P1 −→ Q1, R1 −→∗ R′

1, JQ1K ∼= R′
1.

Then P = P1 |P2 −→ Q1 |P2 = Q, and JP K −→ P ′
3 |P4 = R1 |P4 = R, and R −→∗ R′

1 |R4 = R′.

Since JQ1K ∼= R′
1, we conclude that JQK = JQ1 | P2K = JQ1K | P4

∼= R′
1 | P4 = R′.

2. Suppose JP K = (ν a)P3 and (ν a)P3 −→ (ν a)P ′
3 = R. Then we have two possible cases: either

P3 = JP1K for some P1 or it is not.

• In the former case, JP K = (ν a)JP1K =⇒ P = (ν a)P1. From the induction hypothesis,

JP1K −→ P ′
3 = R1, P1 −→ Q1, R1 −→∗ R′

1, JQ1K ∼= R′
1. Then P = (ν a)P1 −→ (ν a)Q1 =

Q1 and R = (ν a)R1 −→∗ (ν a)R′
1. We conclude that JQK = (ν a)JQ1K ∼= (ν a)R′

1 = R′.

• In the latter case, we know that the reduction is the first step in the reduction of an

expression P = u⟨v1, ..., vn⟩.P1 | u(x1, ..., xn).P2 for which

JP K = (ν c)(u⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K)))) |
| u(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP2K)))) ≡

≡ (ν c)(u⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K))) |
| u(y).(ν d)(y⟨d⟩ | d(x1).(y⟨d⟩ | d(x2).(...(y⟨d⟩ | d(xn).JP2K))))) −→

−→ (ν c)(c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K))) |
| (ν d)(c⟨d⟩ | d(x1).(c⟨d⟩ | d(x2).(...(c⟨d⟩ | d(xn).JP2K))))) =

=R

We have already evaluated this expression in our proof of Soundness, and have seen that it

takes 2n more steps to reduce to the expression JP1K |JP2K{v1, ..., vn/x1, ..., xn} = R′. Hence

P −→ P1 | P2{v1, ..., vn/x1, ..., xn} = Q, and JQK ∼= R′.

12

3. The case JP K = u(x).P1 | u⟨v⟩ cannot happen, as none of our encoding rules encode a single

process in this way. Output always gets encoded using a restriction, which is covered in the

previous case.

4. Suppose JP K ≡ P3 −→ P ′
3 ≡ R. Then there exists P1 such that JP1K = P3 and P ≡ P1. Then by

the induction hypothesis JP1K = P3 −→ P ′
3 = R1 = R, P1 −→ Q1, R1 −→∗ R′

1, JQ1K ∼= R′
1 = R′.

So also P −→ Q1 = Q with JQ1K ∼= R.

Thus by induction on the reductions of JP K, completeness holds.

13

(5) Barb preservation

(P ⇓a =⇒ JP K ⇓a)

Suppose P ⇓a for some a. Then either P ↓a or P −→∗ Q and Q ↓a (in the latter case, we assume

WLOG that the reduction takes more than zero steps).

• If P ↓a, then P = a⟨v1, ..., vn⟩ | P ′ for some process P ′. Then

JP K = (ν c)(a⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K)))) | JP ′K which clearly has

JP K ↓a and thus JP K ⇓a.

• If P −→∗ Q and Q ↓a, we can show that JP K ⇓a by induction on reductions. Suppose P1 −→ P2

in one step, P1 ⇓a and for P2 the statement P2 ⇓a =⇒ JP2K ⇓a holds. Then by soundness,

JP1K −→∗ R, R ∼= JP2K. By the induction hypothesis JP2K ⇓a which implies that R ⇓a and

therefore JP1K ⇓a.

Since Q ↓a, we have a base case and therefore by induction JP K ⇓a.

(JP K ⇓a =⇒ P ⇓a)

Suppose JP K ⇓a for some a. Then either JP K ↓a or JP K −→∗ Q and Q ↓a (again, in the latter case, we

assume WLOG that the reduction takes more than zero steps).

• If JP K ↓a, then we must have that P = a⟨v1, ..., vn⟩ | P ′ for some process P ′ with

JP K = (ν c)(a⟨c⟩ | c(y1).(y1⟨v1⟩ | c(y2).(y2⟨v2⟩ | ... | c(yn).(yn⟨vn⟩ | JP1K)))) | JP ′K as this is the only

way for JP K to have a strong barb of a.

• If JP K −→∗ Q ↓a, we can show that P ⇓a by induction on reductions. Suppose JP1K −→ P2 in

one step, JP1K ⇓a. Then by completeness, P1 −→ Q1, P2 −→∗ P ′
2, P ′

2
∼= JQ1K. By the induction

hypothesis JQ1K ⇓a =⇒ Q1 ⇓a and thus also P1 ⇓a.

Since Q ↓a, we have a base case and therefore by induction P ⇓a.

14

(6) Nontermination preservation

Let us define nontermination as follows: P ⇑ if and only if for all s ∈ N, P −→s, where the notation

P −→s is defined as P −→ P2 −→ ... −→ Ps for some processes {Pi}si=2. In other words, P −→s if and

only if P can take s reduction steps. Let us use this definition to prove the result in both directions.

(P ⇑ =⇒ JP K ⇑)

Suppose P ⇑. Given any s, we must find a sequence of s reductions for JP K. We know that P −→s Q

for some Q. Claim: for any possible reduction step of P , JP K will take one or more reduction steps.

Let us prove this by induction on the possible reductions of P .

Suppose P1, P2 are such that P1 −→ P ′
1 =⇒ JP1K −→k JP1K′, where k ≥ 1. Consider every reduction

P could make:

1. If P = P1 | P2 and P1 | P2 −→ P ′
1 | P2 = P ′, then JP K = JP1K | JP2K −→k JP1K′ | JP2K.

2. If P = (ν a)P1 and (ν a)P1 −→ (ν a)P ′
1, then JP K = (ν a)JP1K −→k (ν a)JP1K′.

3. If P ≡ P1 −→ P ′
1 ≡ P ′ then we know directly that P −→ P ′ and JP K = JP1K −→k JP1K′

4. If P = u⟨v1, ..., vn⟩.P1 | u(x1, ..., xn).P2 then P −→ P1 | P2{v1, ..., vn/x1, ..., xn}. We have seen

already that the reduction of the encoding takes 2n+1 steps to reach a congruent process, which

is always more steps than 1.

Hence for all reduction steps of P , JP K has to take more reduction steps and thus can do at least s

steps for any reduction path of length s of the process P . Therefore JP K ⇑.

(JP K ⇑ =⇒ P ⇑)

Suppose JP K ⇑. Given any s, we must find a sequence of s reductions for P . We know that JP K −→t Q

for any t. Let t = s(2n + 1). We know from the proof of the other direction that the longest

reduction chain of JP K for one reduction step of P is of length 2n+1, which is achieved for any process

P = u⟨v1, ..., vn⟩.P1 | u(x1, ..., xn).P2. In the worst case, P will be fully composed of these, and JP K

will have to take s(2n+ 1) reduction steps to allow P to reduce s steps. It is always possible to find a

reduction of length t for JP K and thus P ⇑.

We have proven the statement in both directions and therefore nontermination preservation holds.

15

Question 3

(a) Assume the following session types, S1 and S2. Do they satisfy S1 ≤ S2?

S1 = µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end

loop : t

quit : Alice! [bool]; end

S2 = Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&

{
loop : Alice? [int]; t

check : Alice! [nat]; end

}
finish : end

The session types S1 and S2 do satisfy S1 ≤ S2. Let us first draw a derivation tree, after which we

can encode it as a relation as in Solution V3. The derivation tree can be found on the following page.

16

[Sub-End]
end ≤ end

[Sub-End]
end ≤ end

[Sub-Recv]
Alice! [nat]; end ≤ Alice! [nat]; end S1 = µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

 ≤ Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

 = S2

[Sub-Bra]

Alice&

finish : end

check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

≤ Alice&

loop : Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

[Sub-Recv]

Alice? [int];Alice&

finish : end

check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

≤ Alice? [int];Alice&

loop : Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

[Sub-µL]

µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

 ≤ Alice? [int];Alice&

loop : Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

[Sub-Bra]

Alice&

finish : end

check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

≤ Alice&

loop : Alice? [int];Alice&

loop : Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

finish : end

[Sub-µR]

Alice&

finish : end

check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

≤ µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

[Sub-Recv]

Alice? [int];Alice&

finish : end

check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

≤ Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

[Sub-µL]

S1 = µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

 ≤ Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{

loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

 = S2

Let us now package this tree as a subtyping relation R. Let S be a set of session types defined as

S =

µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end

loop : t

quit : Alice! [bool]; end

 ,

Alice? [int];µt.Alice&

loop : Alice? [int];Alice&

{
loop : Alice? [int]; t

check : Alice! [nat]; end

}
finish : end

 ,

Alice&

finish : end

check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end

check : Alice! [nat]; end

loop : t

quit : Alice! [bool]; end

quit : Alice! [bool]; end

,

µt.Alice&

loop : Alice? [int];Alice&

{
loop : Alice? [int]; t

check : Alice! [nat]; end

}
finish : end

 ,

Alice? [int];Alice&

loop : Alice? [int];µt.Alice&

loop : Alice? [int];Alice&

{
loop : Alice? [int]; t

check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

 ,

Alice&

loop : Alice? [int];µt.Alice&

loop : Alice? [int];Alice&

{
loop : Alice? [int]; t

check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

 ,

Alice! [nat]; end,

end

Now, let us construct the subtyping relation R ⊆ S × S by encoding the information of the above

derivation tree. First, we ensure that (S1, S2) ∈ R. Then, for every inference rule in the tree which is

not [Sub-µR] or [Sub-µL] we will add a pair (S′
1, S

′
2) to the relation R where we take the session types

S′
1 and S′

2 from the top of the inference rule, S′
1 ≤ S′

2. This results in the following relation:

18

R =

µt.Alice? [int];Alice&

finish : end
check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

 ,

Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{
loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

,

Alice&

finish : end
check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end
check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

,

µt.Alice&

 loop : Alice? [int];Alice&
{
loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

,

µt.Alice? [int];Alice&

finish : end
check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

 ,

Alice? [int];Alice&

 loop : Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{
loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

,

Alice&

finish : end
check : Alice! [nat]; end

loop : µt.Alice? [int];Alice&

finish : end
check : Alice! [nat]; end
loop : t
quit : Alice! [bool]; end

quit : Alice! [bool]; end

,

Alice&

 loop : Alice? [int];µt.Alice&

 loop : Alice? [int];Alice&
{
loop : Alice? [int]; t
check : Alice! [nat]; end

}
finish : end

check : Alice! [nat]; end

,

(Alice! [nat]; end,Alice! [nat]; end) ,

(end, end)

By construction, the conditions of a subtyping hold as per Solution V3 from the slides.

19

(b)

(1) Explain why the following global type is not well-formed under either plain or full

merging:

Gbad = µt.A → B

accept : C → B

{
ping : B → A

{
pong : t

}
stop : end

}
reject : C → B

{
ping : B → A

{
stop : end

}}

(2) Amend Gbad to make it well-formed under full merging but not under plain merging.

Give the projection of the global type you fixed onto A, B, and C.

(1) Let us try to project Gbad onto C and apply plain and full merging.

Firstly, since C is a participant inside the recursion, we have that

Gbad ↾ C =

µt.A → B

accept : C → B

{
ping : B → A

{
pong : t

}
stop : end

}
reject : C → B

{
ping : B → A

{
stop : end

}}

 ↾ C =

= µt.

A → B

accept : C → B

{
ping : B → A

{
pong : t

}
stop : end

}
reject : C → B

{
ping : B → A

{
stop : end

}}

 ↾ C

Since C is different from both A and B, we must determine and merge Gaccept ↾ C and Greject ↾ C,

Gaccept = C → B

{
ping : B → A

{
pong : t

}
stop : end

}
Greject = C → B

{
ping : B → A

{
stop : end

}}
By applying the rules again, we find that the two values are:

Gaccept ↾ C = B ⊕

{
ping : t

stop : end

}
Greject ↾ C = B ⊕

{
ping : end

}
Gbad is not well-formed under plain merging, as Gaccept ̸= Greject. Gbad is not well-formed under full

merging either, since the rule for Gaccept ⊓Greject requires that both expressions have the same labels

in the selection, which is not true. Furthermore, even if this requirement was dropped, the ping branch

cannot be merged, as t ⊓ end is undefined.

20

(2) Claim: the following global type, Ggood, which is amended from the above Gbad, is well-formed

under full merging but not under plain merging.

Ggood = µt.A → B

{
accept : B → C

{
ping : B → A

{
pong : t

}}
reject : B → C

{
stop1 : B → A

{
stop2 : end

}}}
Proof:

Let us project the global type onto all of the participants to see why this is the case.

Ggood ↾ C =

(
µt.A → B

{
accept : B → C

{
ping : B → A

{
pong : t

}}
reject : B → C

{
stop1 : B → A

{
stop2 : end

}}}) ↾ C =

= µt.

(
A → B

{
accept : B → C

{
ping : B → A

{
pong : t

}}
reject : B → C

{
stop1 : B → A

{
stop2 : end

}}}) ↾ C

Since C is different from both A and B, we must determine and merge Gaccept ↾ C and Greject ↾ C.

Gaccept = B → C
{
ping : B → A

{
pong : t

}}
Greject = B → C

{
stop1 : B → A

{
stop2 : end

}}
Gaccept ↾ C = B&

{
ping : t

}
Greject ↾ C = B&

{
stop1 : end

}

The expressions Gaccept ↾ C and Greject ↾ C are not mergeable under plain merging, as they are

different; thus, Ggood is not well-formed under plain merging. However, they are mergeable under full

merging as

(Gaccept ↾ C) ⊓ (Greject ↾ C) = B&

{
ping : t

stop1 : end

}
By applying the projection rules to all participants, we get that

Ggood ↾ A = µt.B ⊕

{
accept : B&

{
pong : t

}
reject : B&

{
stop2 : end

}}

Ggood ↾ B = µt.A&

{
accept : C ⊕

{
ping : A ⊕

{
pong : t

}}
reject : C ⊕

{
stop1 : A ⊕

{
stop2 : end

}}}

Ggood ↾ C = µt.B&

{
ping : t

stop1 : end

}

Thus Ggood is well-formed under full merging with the above projections onto the participants.

21

Question 4

(a) Explain with an example why the side condition “µt.G is closed” is required for the projection

of the recursive type.

Recall that the definition of “closed”: a session type G is closed if G does not contain any type variables

t that have not been bound by an expression µt. For example, the session type µt.A → B
{
ping : t
stop : end

}
is closed, as the only type variable t is bound.

However, consider the session type

G = µu.A → C[int];µt.A → B

ping : t

pong : u

stop : end

Let us project this type onto the participant C.

G ↾ C =

µu.A → C[int];µt.A → B

ping : t

pong : u

stop : end

 ↾ C =

= µu.A? [int];

µt.A → B

ping : t

pong : u

stop : end

 ↾ C

Notice that the type inside the brackets is not closed, as it has a free occurrence of a type variable

u. Now, if the condition “µt.G is closed” did not exist, we would have to terminate the projection

as G ↾ C = µu.A? [int]; end, which is a badly formed type as the µu. does not have a corresponding

u. Instead, given the correct projection rule, we conclude that G cannot be projected onto C as the

different branches (ping, pong, stop) cannot be merged with the ⊓ operator. Hence the rule is required

so that applying our projection rules does not result in invalid session types.

22

(b) Consider the two following global types:

G1 = µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}

G2 = µt.A → B

{
accept : C → D : [nat]; t

reject : µt′.C → D : [nat];C → D : [nat]; t′

}

(1) Prove that they represent the same protocol using the transition relation G
α
=⇒ G′

defined in Global Type Semantics in “Subject Reduction Proof” available from the course

web page.

(2) G1 and G2 are not projectable under either plain or full merging given in the slides.

Define the projection rules which enable to project G1 and G2, and justify your rules using

G1 and G2.

(1)

Consider the following steps:

G1 = µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}
=

= A → B

accept : C → D : [nat];C → D : [nat];µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}
reject : µt′.C → D : [nat]; t′

 =

= A → B

accept : C → D : [nat];C → D : [nat];µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}
reject : C → D : [nat];µt′.C → D : [nat]; t′

 ⇒

CD:[nat]
======⇒ A → B

accept : C → D : [nat];µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}
reject : µt′.C → D : [nat]; t′

 =

= A → B

accept : C → D : [nat];µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}
reject : C → D : [nat];µt′.C → D : [nat]; t′

 CD:[nat]
======⇒

CD:[nat]
======⇒ A → B

accept : µt.A → B

{
accept : C → D : [nat];C → D : [nat]; t

reject : µt′.C → D : [nat]; t′

}
reject : µt′.C → D : [nat]; t′

 =

= A → B

{
accept : G1

reject : µt′.C → D : [nat]; t′

}

23

G2 = µt.A → B

{
accept : C → D : [nat]; t

reject : µt′.C → D : [nat];C → D : [nat]; t′

}
=

= A → B

accept : C → D : [nat];µt.A → B

{
accept : C → D : [nat]; t

reject : µt′.C → D : [nat];C → D : [nat]; t′

}
reject : µt′.C → D : [nat];C → D : [nat]; t′

 =

= A → B

accept : C → D : [nat];µt.A → B

{
accept : C → D : [nat]; t

reject : µt′.C → D : [nat];C → D : [nat]; t′

}
reject : C → D : [nat];C → D : [nat];µt′.C → D : [nat];C → D : [nat]; t′

 CD:[nat]
======⇒

CD:[nat]
======⇒ A → B

accept : µt.A → B

{
accept : C → D : [nat]; t

reject : µt′.C → D : [nat];C → D : [nat]; t′

}
reject : C → D : [nat];µt′.C → D : [nat];C → D : [nat]; t′

 =

= A → B

{
accept : G2

reject : C → D : [nat];µt′.C → D : [nat];C → D : [nat]; t′

}

Now, observe that in the steps of G1, the reject branch is equal to µt′.C → D : [nat]; t′, while in the steps of

G2, it is equal to C → D : [nat];µt′.C → D : [nat];C → D : [nat]; t′. The only semantic rule we are able to

apply for both of these types is
CD:[nat]
======⇒ ad infinitum. Thus the global type semantics defined in the paper

cannot distinguish between the two global types, and we can say that they are equivalent to a global type G3.

Therefore

G1 =⇒∗ A → B

{
accept : G1

reject : G3

}
= G′

1

G2 =⇒∗ A → B

{
accept : G2

reject : G3

}
= G′

2

where

G′
1

AB:accept
=======⇒ G1

G′
1

AB:reject
=======⇒ G3

G′
2

AB:accept
=======⇒ G2

G′
2

AB:reject
=======⇒ G3

Thus the global types cannot be distinguished by our defined global type semantics, as they admit the same

transitions α
=⇒, and thus they represent the same protocol.

24

(2)

Let us define adjust the projection rules to expand the definition of ⊓. Suppose that for some global type G and

participant A, we have that G ↾ A = G1.µt.G2.
d

i∈I Gi, where Gi is open for some i with respect to t. Then,

G ↾ A = G1.
l

i∈I

{
Gi, Gi is closed w.r.t. t
µt.G2.Gi, Gi is open w.r.t. t

In addition, we need to add a rule for expanding recursions during merging. We do this by defining the following:

µt.S ⊓ µt.S′ = µt.S ⊓ µt.S′{S′/t}
µt.S ⊓ µt.S′ = µt.S{S/t} ⊓ µt.S′

with the additional remark that µt′.S = µt.S{t/t′} if t does not appear anywhere in S.

Let us use these new rules to project G1 and G2 onto all participants. For the former,

G1 ↾ A = µt.B ⊕
{
accept : t
reject : end

G1 ↾ B = µt.A&
{
accept : t
reject : end

G1 ↾ C = µt.((D! [nat];D! [nat]; t) ⊓ (µt′.D! [nat]; t′)) =
= (µt.D! [nat];D! [nat]; t) ⊓ (µt′.D! [nat]; t′) =
= (µt.D! [nat];D! [nat]; t) ⊓ (µt.D! [nat]; t) =
= (µt.D! [nat];D! [nat]; t) ⊓ (µt.D! [nat];D! [nat]; t) =
= µt.D! [nat];D! [nat]; t

G1 ↾ D = µt.((C? [nat];C? [nat]; t) ⊓ (µt′.C? [nat]; t′)) =
= (µt.C? [nat];C? [nat]; t) ⊓ (µt′.C? [nat]; t′) =
= (µt.C? [nat];C? [nat]; t) ⊓ (µt.C? [nat]; t) =
= (µt.C? [nat];C? [nat]; t) ⊓ (µt.C? [nat];C? [nat]; t) =
= µt.C? [nat];C? [nat]; t

For the latter,

G2 ↾ A = µt.B ⊕
{
accept : t
reject : end

G2 ↾ B = µt.A&
{
accept : t
reject : end

G2 ↾ C = µt.((D! [nat]; t) ⊓ (µt′.D! [nat];D! [nat]; t′)) =
= (µt.D! [nat]; t) ⊓ (µt′.D! [nat];D! [nat]; t′) =
= (µt.D! [nat]; t) ⊓ (µt.D! [nat];D! [nat]; t) =
= (µt.D! [nat];D! [nat]; t) ⊓ (µt.D! [nat];D! [nat]; t) =
= µt.D! [nat];D! [nat]; t

G2 ↾ D = µt.((C? [nat];C? [nat]; t) ⊓ (µt′.C? [nat]; t′)) =
= (µt.C? [nat]; t) ⊓ (µt′.C? [nat];C? [nat]; t′) =
= (µt.C? [nat]; t) ⊓ (µt.C? [nat];C? [nat]; t) =
= (µt.C? [nat];C? [nat]; t) ⊓ (µt.C? [nat];C? [nat]; t) =
= µt.C? [nat];C? [nat]; t

25

