MSc in Mathematics and Foundations of Computer Science
DISTRIBUTED PROCESSES, TYPES AND PROGRAMMING

Michaelmas Term 2024

Submission deadline: 12 noon, Wednesday 8th January 2025, via Inspera.

There is a total of 100 marks available for this paper, you should attempt all parts of the paper.

NB: You must not discuss this examination paper with anyone.

Please submit answers to all questions as a single .pdf file and typeset with a font size at least
11 point and use A4 paper format with all margins at least 2 cm.

1 TURN OVER

Distributed Processes, Types and Programming

There is a total of 100 marks available for this paper, you should attempt all parts of the paper.

Please submit answers to all questions as a single .pdf file and typeset with a font size at least

11 point and use A4 paper format with all margins at least 2 cm.

Question 1

(a) Give the free names and free variables of the following processes.

(1)
(2)

(vd)(z(y)z(d)) ['e(y) y(y) ['d(y)-(v)y (c)
(2)-(v &) (v)e(2) | (v a, by(x) B(z) | Bla) [e(a))
(4 marks)

(b) This question is about the monadic asynchronous m-calculus. Assume P denotes the set
of processes and N denotes the set of natural numbers. The function size : P — N which
returns a size of a given process is defined by:

(1)

size(0) = size(u(v)) = 1, size(u(z).P) = 1 + size(P),
size((v a)P) = size(!P) = 1 + size(P) and size(P | Q) = size(P) + size(Q).

Define the size of the context C' (denoted by size(C)) size : P U {—} — N assuming
size(—) = 1:

Cu= — | C|P | P|C | (va)C
You can use size(P) defined above.

Assume

P = a(z).(a(z).a(z)|a(z)) and P = a(z).(alz)|a(z))

2|

Are P and P’ reduction congruent? More specifically:

— If P and P’ are reduction congruent, prove P = P';

— Otherwise prove P 2 P’, giving the minimum size of context C' which differenti-
ates P from P’.

You can use the equivalence laws given in the slides.
Assume

Q =la(z).(a(z).a(z)|a(z)) Q" =la(z).(alz)|a(z))
Are @ and Q' reduction congruent? More specifically:

— If Q and Q' are reduction congruent, prove Q = @Q’;

— Otherwise prove @ % @', giving the minimum size of context C' which differenti-
ates @ from Q.

You can use the equivalence laws given in the slides.

(16 marks)

1 TURN OVER

(¢) This is a question about the asynchronous monadic 7-calculus. Assume two statements:

(i) if P | a for some a, then @ | a; and if Q | a for some a, then P | a

(ii) if P | a for some a, then @ | a; and if Q | a for some a, then P | a
Does (i) imply (ii)? Le., if a pair of P and (@ satisfies (i), then a pair of P and @ satisfies
(ii)? If it is true, prove that (i) implies (ii). If not, find out a counterexample.

Conversely, does (ii) imply (i)? If it is true, prove that (ii) implies (i). If not, find out a
counterexample. (5 marks)

Question 2

Suppose the following direct encoding [-] from the polyadic synchronous m-calculus to the
monadic asynchronous w-calculus in Class Sheet 2:

[u(@1, - 20).P] =u(y).(v) Gd) | d(z1). () | d@a). (- (5(d) | d(zn) [P])-.)
where y & fo(P), and d & fn(P).
(801, 00} P] = (v) (@(e) | e(3).(FF(0n) | (o). @ 0) | | eym)-@nton) | [PD--)))

where y; & fo(P) (1 <i<mn)and c ¢ fn(P).

We assume the polyadic synchronous m-calculus is typed, i.e., we assume the identifier u always
sends and receives a vector of the same arity. For example, @) is not typed but R is typed
assuming Ry, Ry and R3 are also typed.

Q = a(z).Q1]a(zy,72).Q2|a(b).Qs
R = a(ml,xz).Rl|a(.’1:1,:1:2).R2|E<b1,b2).R2

Recall the formal definition of encodability criteria from Page 5 in the slides “Correctness of
Encodings and Separation Results”.

(a) Explain the reason (with an example) why the polyadic 7-calculus must be typed to prove
the above encoding satisfies the criteria. (5 marks)

(b) Assuming the polyadic synchronous m-calculus is typed, prove the above encoding satisfies
the encodability criteria. (20 marks)

3 TURN OVER

Question 3

(a) This question is about binary (2-party) session types.

Assume the following session types, S; and Sy. Do they satisfy S; < S5?7 If so, prove
S1 < 55 using the method of Solution V2 or Solution V3 from the slides. Otherwise show
S1 £ S using the method of Solution V2 or Solution V3 from the slides.

finish : end

I - Alice! .

S, = ut.Alice?[int]; Alice; { ek : Alice![nat];end }
loop : t

quit : Alice![bool]; end

s .. | loop : Alice?[int|; t
. 2 . \ ‘
loop : Alice?[int]; Alicel { check : Alice! [nat]; end }

Sz = Alice?[int]; it.Alice& {

finish : end

In your proof, you can omit Alice from the syntax of types. (15 marks)
(b) (1) The following global type, Gyaq, is not well-formed under either plain or full merging.
ping : B — A {pong : t}

stop : end
reject : C — B {ping : B — A {stop : end}}

Gb- 1= ’utA - B (Z(I(Z(fpt . C - B

Explain why it is not well-formed.

(2) Amend Gpaq to make it well-formed under full merging but not under plain merging.
There might be several ways to fix G.q. You only need to show one fix.

Then give the projection of the global type you fixed onto A, B and C.
(10 marks)

Question 4

(a) Explain with an example why the side condition “ut.G is closed” is required for the
projection of the recursive type rule given below.

t.G end r ¢ pt(G) and put.G is closed
pe.G I pt.(G | r) otherwise
tlir = t
end [r = end

(5 marks)

(b) Consider the following two global types:

-~ accept : C — D : [nat];C — D : [nat]; t
Gi= ptA-B reject : pt’.C — D : [nat]; t’

- accept : C — D : [nat]; t
Gy= ptA—B reject : pt’.C — D : [nat];C — D : [nat]; t’

(1) Prove that they represent the same protocol using the transition relation G = G’
defined in Global Type Semantics in ”Subject Reduction Proof” available from the
course web page.

(2) Gy and G5 are not projectable under either plain or full merging given in the slides.
Define the projection rules which enable to project Gy and Gy, and justify your rules
using GG and Go.

(20 marks)

LAST PAGE

(o2

