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1 Abstract

In this report, we will be describing the construction of BCH codes along with their implementation.

The sections below will all be referring to the source code contained in Appendix A. This report will

consider a specific subset of BCH codes called binary narrow-sense BCH codes.
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2 Construction of the code

BCH codes are a sub-class of cyclic codes. Traditionally, codes are first invented and constructed, after

which their error correcting capability can be determined. However, in the case of BCH codes, we work

in the other direction: we first specify the number of random errors we want our code to correct, after

which we construct our parameters that allow us to encode and decode strings of a certain length to

correct the specified number of errors. The parameters that we need to construct for a BCH code are

the primitive polynomial, a primitive element, and the generator polynomial.

2.1 Mathematical background

To construct a BCH code, we require some theory about polynomials in finite fields. We assume

knowledge of basic abstract algebra and field theory.

Definition 1: GF(q)

Given any prime q, the Galois field GF(q) is a finite field of q elements.

From now on, we will focus our attention on the specific case of q = 2, as we are constructing

binary BCH codes. In this case, GF(2) consists of the elements 0, 1 with addition and multiplication

defined modulo 2 as usual.

To encode and decode BCH codes, we want to utilise polynomials, which are defined as follows:

Definition 2: Polynomials over GF(2)

• A polynomial f(x) ∈ GF(2)[x] is of the form f(x) = anx
n+an−1x

n−1+...+a2x
2+a1x+a0,

where ai ∈ GF(2).

• Polynomials in GF(2) are added and multiplied like normal polynomials, but have their

coefficients reduced modulo 2.

• We say that a polynomial f ∈ GF(2)[x] is divisible by a polynomial g ∈ GF(2)[x] if there

exists a polynomial h ∈ GF(2)[x] such that f(x) = g(x) ·h(x)+0, i.e. when the remainder

of division of f by g is zero.

• We say that a polynomial f ∈ GF(2)[x] is irreducible if it is not divisible by a polynomial

of degree m, where deg(f) < m < 0

• We say that an irreducible polynomial f ∈ GF(2)[x] of degree m is primitive if the smallest

integer n for which f divides xn + 1 is n = 2m − 1.

It is important to note that any irreducible polynomial of degree m divides x2m−1+1, but primitive

polynomials do not have any factors of the same form with a smaller exponent.
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We now want to construct an extension field GF(2m) of the base field GF(2) for any m. It can be

shown that such a field exists and can be constructed as follows [3]:

Theorem 3: Construction of GF(2m)

Let p(x) be a primitive polynomial of degree m. It can be shown that primitive polynomials

exist for every such degree.

Let α be a root of the polynomial, p(α) = 0. Then, the set

F = {0, 1, α, α2, ..., α2m−2}

forms a field of 2m elements, where multiplication of elements is defined as addition of exponents.

Proof:

We note that since p divides x2
m−1 + 1, we have that

x2
m−1 + 1 = h(x)p(x)

α2m−1 + 1 = h(α)p(α) = h(α) · 0 = 0

α2m−1 = 1

Thus the set F is closed under multiplication.

To define addition, we note that for all exponents i we can divide xi by p to get

xi = h(x)p(x) + r(x)

where r(x) is a polynomial of degree m− 1 or less. Then, substituting α, we get

αi = h(α)p(α) + r(α) = 0 + r(α) = r(α)

Thus, every power of α can be represented as a polynomial in α. It can be shown that all of

these polynomials are distinct. Addition of elements in F is now defined as regular polynomial

addition in GF(2).

Corollary 4: Isomorphism of extension field

The extension field GF(2m) is isomorphic to the vector space GF(2)m and to the field of poly-

nomials GF(2)[α] modulo some primitive polynomial of degree m.

With these prerequisites, we are ready to implement the BCH code in practice.
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2.2 Primitive element and polynomial

Our first step is to generate a primitive element α for a primitive polynomial p(x). We have seen

above that primitive polynomials exist for every length m, but we must now define how to do this

in practice. Our approach is to generate random irreducible polynomials and see whether they are

primitive or not. The sympy function sympy.polys.galoistools.gf_irreducible is able to generate

random irreducible polynomials of a specified degree. To test whether a polynomial is primitive, we

must test whether it is divisible by xi + 1 for all values 1 ≤ i ≤ n − 1. If our random irreducible

polynomial is a factor of any of these, then we regenerate the polynomial and try again. Otherwise, we

know that the polynomial is primitive and use it for encoding and decoding. This logic is implemented

in the find_primitive function on page 15. By definition, the symbol α is the primitive element

which we represent as the sympy variable z in code.

If a user does not specify a primitive polynomial when running the encoding, the generated poly-

nomial will be output and must be specified for the decoding (as the same polynomial has to be used

for encoding and decoding the message).

2.3 Generator polynomial

The next step is to determine a generator polynomial for our BCH code. The generator polynomial

determines how many errors we can correct and is used for encoding and decoding messages.

Definition 5: Generator polynomial

Let t be the number of errors our BCH code is able to correct.

The generator polynomial g(x) ∈ GF(2)[x] is defined as the lowest-degree polynomial of GF(2)

that has α, α2, ..., α2t as its roots.

To find the generator polynomial, we must first find the minimal polynomials ϕi(x) of αi for each

1 ≤ i ≤ 2t. Then, the generator polynomial can be calculated by evaluating

g(x) = LCM{ϕ1(x), ϕ2(x), ..., ϕ2t(x)}

From Theorem 2.14 in [3] we know that if ϕ(x) is the minimal polynomial of some element β in

GF(2m), and e is the smallest integer such that β2e = β, then

ϕ(x) =
e−1∏
i=0

(x+ β2i)
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Definition 6: BCH code

A binary narrow-sense BCH code consists of a primitive element α, primitive polynomial p(x),

and generator polynomial g(x) constructed as above.

The BCH code has the following characteristics:

• m, the exponent of the extension Galois field

• n = 2m − 1, the length of the codewords generated

• t, the number of errors that the code can correct

• c = deg(g), the degree of the generator polynomial, which indicates how many checksum

bits the code will generate

• k = n− c, the number of data bits that can be encoded at one time

We say that a code is a [n, k] BCH code if it has the parameters n and k as described above.

This logic is implemented in the find_generator and find_minimal_polynomial functions on page

16. The find_generator function takes the LCM of the minimal polynomials of αi for all i from 1

to 2t using the sympy.polys.galoistools.gf_lcm function. The find_minimal_polynomial takes in

an element β. It then multiplies together all polynomials x−β2i ∈ GF(2)[z][x], which are polynomials

in x with coefficients in GF(2)[z], equivalent to having coefficients in GF(2m). The loop stops when

the algorithm finds a previous coefficient, which is guaranteed to happen due to the properties of our

finite field. Afterwards, the result is expanded using the expand_expression function on page 17 and

each coefficient is reduced modulo the primitive element. The resulting coefficient is guaranteed to be

in GF(2) instead of GF(2)[z] by the aforementioned theorem.

5



3 Encoding using the code

There are two ways of encoding a message using a BCH code: either using a systematic encoding,

where the message appears verbatim in the code, and a non-systematic encoding, where the codeword

does not contain the message. For this project, we will be using the non-systematic encoding, as the

systematic encoding is indistinguishable from a CRC checksum with binary BCH codes over GF(2) [1].

To do the encoding, we simply multiply the polynomial representation of the message m(x) by the

generator polynomial g(x) to get the codeword s(x):

s(x) = m(x) · g(x)

This is implemented in the encode function on page 18, which does the multiplication, converts the

polynomial back to an array and pads it with the right amount of zeros using the fill_data function

on page 23.

4 Decoding using the code

We will now move on to decoding the code. While decoding a correct codeword is easy, as it just

requires one to reverse the multiplication done by the encoding function, correcting possible errors

requires some effort. The decoding logic is contained in the decode function on page 18, which chains

together the functions we will see below.

4.1 Detecting errors

Errors in a BCH codeword are detected using syndromes. Notice that, if an error occurs in transmission,

the received polynomial r can be represented as

r(x) = s(x) + e(x)

where e is the error polynomial, having a coefficient of 1 everywhere where an error occurred, e(x) =

xi1+...+xiν , where ν is the number of errors that have occurred. Recall that the generator polynomial,

g(x), is defined as a polynomial with zeroes at α1, ...α2t. Since the codeword s is a multiple of g, we

also know that

r(αi) = s(αi) + e(αi) = 0 + e(αi) = e(αi)

We call these values Si := r(αi) the syndromes of the message. In particular, if no errors occurred,

then we know that e(x) = 0 and all of the syndromes will be equal to zero also. On the other hand,

if errors have occurred, then calculating the syndromes will let us isolate the error vector and find the

error locations in the following steps.
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The find_syndromes function on page 19 evaluates and returns all of these syndromes. It uses the

substitute function on page 21 to substitute one polynomial into another.

4.2 Error locator polynomial

Suppose exactly ν errors have occurred in transmission. We will follow the method in [2] to construct

and determine the coefficients of an error locator polynomial.

Recall from above that the syndromes were determined by evaluating the error polynomial at αi.

In particular, S1 = e(α) = αi1 + ...+ αiν Define the error locations as Xi = αik , i ∈ {1, ..., ν}. We can

rewrite the syndromes determined above as follows:

S1 = X1 +X2 + ...+Xν

S2 = X2
1 +X2

2 + ...+X2
ν

...

S2t = X2t
1 +X2t

2 + ...+X2t
ν

The error locator polynomial is defined as a polynomial with coefficients in GF(2m), or equivalently in

GF(2)[z], such that its roots are the inverse error locations

Λ(x) = Λνx
ν + Λν−1x

ν−1 + ...+ Λ1x
1 + 1

= (1− xX1)(1− xX2)...(1− xXν)

Using this definition, we can determine the following relation for all i ∈ {1, 2, ..., ν}:

Λ1Si+ν−1 + Λ2Si+ν−2 + ...+ ΛνSi = −Si+ν

Rewriting this in matrix form results in the following:



S1 S2 S3 · · · Sν−1 Sν

S2 S3 S4 · · · Sν Sν+1

S3 S4 S5 · · · Sν+1 Sν+2

...
...

...
. . .

...
...

Sν−1 Sν Sν+1 · · · S2ν−3 S2ν−2

Sν Sν+1 Sν+2 · · · S2ν−2 S2ν−1





Λν

Λν−1

Λν−2

...

Λ2

Λ1


=



−Sν+1

−Sν+2

−Sν+3

...

−S2ν−1

−S2ν


It can be shown that this matrix is nonsingular if and only if there are ν errors [2]. Thus to find out

how many errors have occurred given that there is at least one error, it suffices to try to establish the

above syndrome matrix for every size starting from t, the number of errors our code can correct, down
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to 1. The largest size for which the determinant of this matrix is nonzero is the number of errors that

actually happened.

The function find_error_locator on page 19 implements this calculation. It first calculates the

determinants in turn modulo the primitive polynomial and continues to the next phase when the

determinant is nonzero. Next, it augments the matrix by the syndrome vector shown above and finds

the RREF of the matrix using SymPy’s rref function. As SymPy cannot execute the calculations in

our extension field itself, we must expand the output of the RREF calculation by evaluating powers,

fractions, products, and sums. This is done by the expand_expression function on page 17. To

calculate inverses in the extension field, the function uses the find_inverse function on page 21 which

uses the sympy.polys.galoistools.gf_gcdex function to apply the extended Euclidean algorithm to

find an inverse function modulo the primitive polynomial. For example, if we wanted to calculate the

inverse of a polynomial f(x) modulo the primitive polynomial p(x), we use the extended Euclidean

algorithm to calculate polynomials a(x) and b(x) such that

f(x)a(x) + p(x)b(x) = 1

This is always possible as p is a primitive polynomial and f is a nonzero polynomial modulo p. Then,

a(x) is returned as the inverse of f(x).

Finally, after expanding, the function returns the coefficients of the error locator polynomial.

4.3 Finding the error locations

To find the error locations X1, ..., Xν , we must construct the error locator polynomial, solve for its

roots, and find the exponent of their inverse to get the locations of the errors. This is implemented in

the find_error_pos function on page 20.

The function first constructs the locator polynomial as a polynomial in GF(2)[z][x] with the coef-

ficients calculated above, and then finds all roots by enumerating powers of α, implemented in the

find_all_roots function on page 22. It then finds the inverse of each root using the find_inverse

function again, and looks up the power of α this inverse corresponds to using a lookup table. This

lookup table is generated by the find_all_powers function on page 22.

4.4 Correcting and decoding

Finally, the decode function constructs the error polynomial e(x) = xi1 + ...+ xiν using the values for

i1, ..., iν it found in the previous function, and adds this to the received polynomial r(x) to get the

corrected polynomial m(x).

The decode_correct_code function on page 23 then simply divides this by the generator and

padding the result with an adequate number of zeroes.
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5 Demonstration

Let us demonstrate the functionality of this implementation by a few examples. The main function on

page 25 is called when the script is run and provides a command-line interface for encoding, decoding,

and testing of the error-correcting capabilities of the BCH code implementation.

$ python3 ./bch.py

usage: BCH [-h] -m EXPONENT -t ERRORS_CORRECTED [-p PRIMITIVE] [-e ENCODE | -d DECODE | -x]

5.1 Encoding and decoding ASCII messages

Let us start by encoding and decoding messages and introducing errors manually. First, we will encode

a single 7-bit ASCII character using a [15, 7] BCH code.

$ python3 ./bch.py -m 4 -t 2 -e "A"

111010110010001

primitive: 10011

Our output codeword is the 15-bit string 111010110010001 as expected, and the primitive polynomial

is 10011. In reality, we would not have to also transmit the primitive polynomial when sending the

message, as that would be agreed upon between parties beforehand. However, for these examples

we will generate a new primitive polynomial every time we encode a message. Decoding the correct

codeword works as expected:

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "111010110010001"

A

Decoding also works when there are up to two errors in the transmitted message:

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "111010110010001"

A

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "11 0 010110010001"

A

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "1110 0 0110010 1 01"

A

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "1110101100100 10 "

A
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$ python3 ./bch.py -m 4 -t 2 -p 10011 -d " 00 1010110010001"

A

However, if more than two errors occur, the distance of the erroneous codeword will be closer to

some other valid codeword and the wrong message will be returned. As such, this BCH code cannot

detect or correct more than the two errors it was designed for.

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "111010110010 110 "

v

$ python3 ./bch.py -m 4 -t 2 -p 10011 -d "11101 1 11 1 01 1 001"

X

We can also vary the length of the encoded string, the size of the Galois field, and the number

of errors corrected. Note that in the previous example, the length of one ASCII character (7 bits)

precisely matched the length of the message accepted by the BCH code. However, this is not the case

in general. When the length of the encoded message is not equal to the length accepted by the BCH

code, the main function will add zeroes to the end for padding and split the message into chunks of

length k = 2m−1−deg(g), where deg(g) is the degree of the generator polynomial constructed. Below

are some examples of longer codes and messages being encoded and decoded correctly, with errors

highlighted.

The first example is a [15, 1] BCH code, which has 1 data bit and 14 checksum bits, but which can

recover from 7 errors per block. This is also known as a trivial repetition code.

$ python3 ./bch.py -m 4 -t 7 -e "S"

111111111111111000000000000000111111111111111000000000000000000000000000000111111111111111

111111111111111

primitive: 10011

$ python3 ./bch.py -m 4 -t 7 -p 10011 -d

"111111111111111000000000000000111111111111111000000000000000000000000000000111111111111111

111111111111111"

S

$ python3 ./bch.py -m 4 -t 7 -p 10011 -d

"111111111111111 1111111 00000000 0000000 11111111000000000000000000000000000000

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1111111111111111"

S
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Here is another example with a longer piece of text being encoded with a [31, 11] BCH code that

can correct 4 errors:

$ python3 ./bch.py -m 5 -t 4 -e "The rain in Spain falls mainly on the plain!"

100101111001011101111110110100100011100000011110100100110000101011001000100001001010010101

100100010111001100000110111010101101010100000000001011000100110110010110010100100000001111

111110101010000000000101100010011011001011001101000011010001000000100110110001000110101110

010110101101101110100000100110001111001001100100111100110110010000011010000011100111001101

110010001111011101010101110100111110101011011100110111001000111100000111001100001000011100

000011110100100000111101110011111011110100011110110111010000010011000111100100110010010101

011111111110100111011100100100100011001010000110010011101100100101010111111111101101110011

010111100111000110110010110010001000010010100101011010101110111010111000000010001011010001

111111011101001010001000001100010000110011000011011111101110011100110111001000111100001100

1111011110001111110000101101100000001000101101011101110101

primitive: 100101

$ python3 ./bch.py -m 5 -t 4 -p 100101 -d

"10010111100101110111111011010010001110000001111010010011000010101100100010000100101001010

110010001011100110000011011101010110101010000000000101100010011011001011001010010000000111

111111010101000000000010110001001101100101100110100001101000100000010011011000100011010111

001011010110110111010000010011000111100100110010011110011011001000001101000001110011100110

111001000111101110101010111010011111010101101110011011100100011110000011100110000100001110

000001111010010000011110111001111101111010001111011011101000001001100011110010011001001010

101111111111010011101110010010010001100101000011001001110110010010101011111111110110111001

101011110011100011011001011001000100001001010010101101010111011101011100000001000101101000

111111101110100101000100000110001000011001100001101111110111001110011011100100011110000110

01111011110001111110000101101100000001000101101011101110101"

The rain in Spain falls mainly on the plain!

$ python3 ./bch.py -m 5 -t 4 -p 100101 -d

"1001011110 10 01 00 011111101101001000111000000111101001001100001010110010001000010010100101

011001000101110011000001101110101011010101000000000010110001001101100101100101001000000011

111111101010100000000001011000100110110010110011010000110100010000001001101100010001101011

100101101011011011101000001001100011110010011001001111001101100100000110100000111001110011

011100100011110111010101011101001111101010110111001101110010001111000001110011000010000111

000000111101001000001111011100111110111101000111101101110100000100110001111001001100100101

010111111111101001110111001001001000110010100001100100111011001001010101111111111011011100
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110101111001110001101100101100100010000100101001010110101011101110101110000000100010110100

011111110111010010100010000011000100001100110000110111111011100111001101110010001111000011

00111101111000111111000010110110000 1110 000101101011101110101"

The rain in Spain falls mainly on the plain!

5.2 Correcting all possible errors

Finally, we will demonstrate the error-correcting capabilities of the BCH code by exhaustively checking

all of the possible errors for the [15, 7] BCH code. The test function on page 24 generates a random

message, encodes it, and then tries to correct every possible 1-bit and 2-bit error in the message. If

any of the erroneous codewords get decoded to a different message, then the function throws an error.

$ python3 ./bch.py -m 4 -t 2 --test

Message: [1, 1, 1, 1, 0, 0, 0]

All 1-bit errors corrected!

All 2-bit errors corrected!

$ python3 ./bch.py -m 4 -t 2 --test

Message: [0, 1, 1, 0, 1, 1, 1]

All 1-bit errors corrected!

All 2-bit errors corrected!

$ python3 ./bch.py -m 4 -t 2 --test

Message: [1, 0, 1, 1, 1, 1, 0]

All 1-bit errors corrected!

All 2-bit errors corrected!

In all of the generated test cases, all 1-bit and 2-bit errors were successfully corrected and no errors

were thrown.
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A Source Code

"""BCH encoding and decoding project.

Sergey Ichtchenko

University of Oxford

Information Theory

MT24 mini-project

"""

import argparse

import random

import sys

import warnings

from sympy import GF, ZZ, Matrix, Poly, div, Symbol, Add, Mul, Pow, Integer, degree

from sympy.abc import x, z

from sympy.polys.galoistools import gf_gcdex, gf_lcm, gf_irreducible

warnings.filterwarnings("ignore", category=DeprecationWarning)

class BCH:

"""BCH code properties and functionality.

On initialisation, constructs the required parameters for the BCH code.

Encoding can be called using the `encode` function,

and error-corrected decoding using the `decode` function.

Attributes:

m: The exponent of the Galois field size

n: The codeword length

t: The number of errors the code is able to correct

c: The number of checksum bits in the code

k: The number of data bits that can be encoded

primitive: The primitive polynomial of the Galois field

alpha: A primitive element of the Galois field

generator: The generator polynomial used by the BCH code

"""
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def __init__(self, m, t, primitive=None):

"""Initialises the BCH code with the given parameters.

Args:

m: The exponent of the Galois field size. The codeword length is m**2-1

t: The number of errors to correct

primitive: An integer representing a primitive polynomial (optional)

"""

self.m = m

self.n = 2**m - 1

self.t = t

if not primitive:

self.primitive = self.find_primitive()

else:

self.primitive = Poly([int(x) for x in primitive], z, domain=GF(2))

self.alpha = Poly(z, z, domain=GF(2))

self.generator = self.find_generator()

self.c = degree(self.generator)

self.k = self.n - self.c

def find_primitive(self):

"""Find a primitive polynomial for the Galois field

Returns:

A primitive polynomial for the Galois field

"""

while True:

irreducible = Poly(gf_irreducible(self.m, 2, ZZ), z, domain=GF(2))

for i in range(1, self.n):

test_poly = Poly(z**i - 1, z, domain=GF(2))

_, remainder = div(test_poly, irreducible)

if remainder == 0:

break

else:

return irreducible
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def find_generator(self):

"""Find a generator polynomial for the Galois field

Returns:

A generator polynomial based on the primitive polynomial and alpha

"""

generator = Poly(1, x, domain=GF(2))

for i in range(1, 2*self.t):

current = self.find_minimal_polynomial(self.alpha**i)

generator = Poly(gf_lcm(

generator.all_coeffs(), current.all_coeffs(), 2, ZZ

), x, domain=GF(2))

return generator

def find_minimal_polynomial(self, element):

"""Find a minimal polynomial (mod the primitive polynomial) for a given element.

Args:

element: The element to find a minimal polynomial for. Usually a power of alpha.

Returns:

A minimal polynomial for the element

"""

seen = set()

i = 0

result = Poly(1, x)

while True:

current = Poly(element**(2**i), z) % self.primitive

if current in seen:

break

result *= Poly(x, x) - current.set_domain(ZZ)

seen.add(current)

i += 1

result = Poly(result, x, domain=GF(2)[z])

reduced = [

self.expand_expression(coefficient)%self.primitive

for coefficient in result.all_coeffs()

]

assert(all(coefficient in (0,1) for coefficient in reduced))

result = Poly(reduced, x, domain=GF(2))

return result
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def expand_expression(self, expression):

"""Expands an Expr type by evaluating all operations in the Galois field

Args:

expression: An Expr type to expand

Returns:

a Poly representing the evaluated expression

"""

if isinstance(expression, Symbol):

return Poly(expression, z, domain=GF(2)) % self.primitive

if isinstance(expression, Integer):

return Poly(expression, z, domain=GF(2)) % self.primitive

if isinstance(expression, Mul):

result = Poly(1, z, domain=GF(2))

for term in expression.args:

result *= self.expand_expression(term)

return result % self.primitive

if isinstance(expression, Add):

result = Poly(0, z, domain=GF(2))

for term in expression.args:

result += self.expand_expression(term)

return result % self.primitive

if isinstance(expression, Pow):

base, exponent = expression.args

base = self.expand_expression(base)

exponent = int(exponent)

if exponent < 0:

assert self.primitive is not None

base = self.find_inverse(base)

exponent = abs(exponent)

return Poly(base**exponent, z, domain=GF(2)) % self.primitive
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def encode(self, bits):

"""Encode a message using the generated BCH code.

Args:

bits: A list containing the bits to encode

Returns:

A list containing the bits of the codeword

"""

normalised = self.fill_data(bits, self.k)

data = Poly(normalised, x, domain=GF(2))

encoded = data * self.generator

return self.fill_data(encoded.all_coeffs(), self.n)

def decode(self, bits):

"""Decode a codeword using the generated BCH code.

Args:

bits: A list containing the bits of the codeword

Returns:

A list containing the bits of the decoded message, corrected for errors

"""

normalised = self.fill_data(bits, self.n)

encoded = Poly(normalised, x, domain=GF(2))

syndromes = self.find_syndromes(encoded)

if all((syndrome == 0 for syndrome in syndromes)):

return self.decode_correct_code(encoded)

locator = self.find_error_locator(syndromes)

errors = self.find_error_pos(locator)

for error in errors:

encoded += Poly(x**error, x, domain=GF(2))

return self.decode_correct_code(encoded)
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def find_syndromes(self, encoded):

"""Find the syndromes of a codeword

Args:

A polynomial representing any codeword

Returns:

A list of syndromes of the polynomial.

If no errors have occurred, all syndromes are zero.

"""

syndromes = []

for i in range(1,2*self.t+1):

syndrome = self.substitute(encoded, self.alpha**i)

syndrome %= self.primitive

syndromes.append(syndrome)

return syndromes

def find_error_locator(self, syndromes):

"""Find the error locator polynomial given syndromes.

Args:

syndromes: A list of syndromes obtained from `find_syndromes`

Returns:

An error locator vector,

where the entries are coefficients of the error locator polynomial

"""

for i in range(self.t):

nu = self.t-i # Number of errors

syndrome_matrix = Matrix(nu, nu, lambda a,b: syndromes[a+b].as_expr())

detection = Poly(syndrome_matrix.det(), z, domain=GF(2)) % self.primitive

if detection == 0:

continue

syndrome_vector = Matrix(nu, 1, lambda a,_: -syndromes[nu+a].as_expr())

augmented = syndrome_matrix.col_insert(nu, syndrome_vector)

locator = augmented.rref(pivots=False).col(nu)

result = []

for row in range(nu):

result.append(self.expand_expression(locator[row]))

return result
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def find_error_pos(self, locator):

"""Find the error positions based on the error locator vector.

Args:

locator: The error locator vector obtained from `find_error_locator`

Returns:

A list of positions where errors have occurred in the codeword

"""

locator_poly = Poly(1, x, domain=GF(2)[z])

for i, lambda_i in enumerate(locator[::-1], start=1):

locator_poly += Poly(lambda_i%self.primitive, x, domain=GF(2)[z]) *\

Poly(x**i, x, domain=GF(2)[z])

roots = self.find_all_roots(locator_poly)

alpha_powers = self.find_all_powers(self.alpha)

result = []

for root in roots:

inverse = self.find_inverse(root) % self.primitive

inverse_coefficients = inverse.all_coeffs()

result.append(alpha_powers[tuple(inverse_coefficients)])

return result
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def find_inverse(self, polynomial):

"""Finds the inverse of a polynomial modulo the primitive polynomial

Args:

polynomial: The polynomial to find the inverse for

Returns:

The inverse of the polynomial

"""

inv, _, gcd = gf_gcdex(polynomial.all_coeffs(), self.primitive.all_coeffs(), 2, ZZ)

assert gcd == [1]

return Poly(inv, z, domain=GF(2))

def substitute(self, polynomial, substitution):

"""Substitute a polynomial into the variables of another.

Args:

polynomial: The polynomial to substitute into. This will have its variables replaced.

substitution: The polynomial to insert

Returns:

The evaluated expression `polynomial(substitution(z))`

"""

result = Poly(0, z, domain=GF(2))

for i, coeff in enumerate(polynomial.all_coeffs()[::-1]):

result += Poly(coeff, z, domain=GF(2)) * Poly(substitution**i, z, domain=GF(2))

return result
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def find_all_powers(self, element):

"""Find all powers of an element in the Galois field.

This is useful for looking up powers based on an expression later on.

Args:

element: The element to find powers for, usually alpha

Returns:

A dict containing the coefficients of polynomials as keys

and exponents of `element` as values

"""

result = {}

for i in range(0, self.n):

power = Poly(element**i, z, domain=GF(2)) % self.primitive

if tuple(power.all_coeffs()) in result:

continue

result[tuple(power.all_coeffs())] = i

return result

def find_all_roots(self, polynomial):

"""Find all the roots of a polynomial in the Galois field.

Args:

polynomial: The desired polynomial

Returns:

A list of roots in the Galois field.

These are composed of powers of `alpha` reduced modulo the primitive polynomial.

"""

roots = []

for i in range(1,self.n+1):

root = self.substitute(polynomial, self.alpha**i) % self.primitive

if root == 0:

roots.append(self.alpha**i % self.primitive)

return roots
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def fill_data(self, data, length):

"""Prepend a list of bits with zeroes if the length is too short

Args:

data: The list of bits to complete with zeroes

length: The desired length of the list

Returns:

A list containing the original data prepended with zeroes.

If the length of the list is longer than the desired length, an error is thrown.

"""

assert len(data) <= length

return [0]*(length-len(data)) + data

def decode_correct_code(self, encoded):

"""Given a codeword that is known to be correct, decode it.

Args:

encoded: A polynomial which has had its errors corrected

Returns:

A list containing the decoded codeword

"""

decoded, _ = div(encoded, self.generator)

result = decoded.all_coeffs()

return self.fill_data(result, self.k)
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def test(bch):

"""Code to test BCH functionality.

Generates a BCH code, sends a random message, and tries to correct every possible

1- and 2-bit error.

"""

correct = [random.choice((0,1)) for _ in range(bch.k)]

print("Message:", correct)

encoded = bch.encode(correct)

# Test all 1-bit errors

for i, bit in enumerate(encoded):

error = encoded[:i] + [1-bit] + encoded[i+1:]

corrected = bch.decode(error)

assert corrected == correct

print("All 1-bit errors corrected!")

# Test all 2-bit errors

for i, bit1 in enumerate(encoded[:-1]):

for j, bit2 in enumerate(encoded[i+1:], start=i+1):

error = encoded[:i] + [1-bit1] + encoded[i+1:j] + [1-bit2] + encoded[j+1:]

corrected = bch.decode(error)

assert corrected == correct

print("All 2-bit errors corrected!")
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def main():

parser = argparse.ArgumentParser(prog="BCH")

parser.add_argument("-m", "--exponent", required=True)

parser.add_argument("-t", "--errors-corrected", required=True)

parser.add_argument("-p", "--primitive")

data = parser.add_mutually_exclusive_group()

data.add_argument("-e", "--encode")

data.add_argument("-d", "--decode")

data.add_argument("-x", "--test", action="store_true")

args = parser.parse_args(sys.argv[1:])

bch = BCH(int(args.exponent), int(args.errors_corrected), primitive=args.primitive)

if args.test:

test(bch)

elif args.encode:

message = args.encode.encode("ascii")

bitstring = [int(a) for a in "".join([bin(character)[2:].zfill(7) for character in message])]

padding_length = -len(bitstring) % bch.k

bitstring += [0]*padding_length

chunks = [

bitstring[bch.k*i:bch.k*(i+1)] for i in range((len(bitstring) + bch.k - 1) // bch.k)

]

result = [bch.encode(chunk) for chunk in chunks]

print("".join(["".join([str(bit) for bit in chunk]) for chunk in result]))

if not args.primitive:

print("primitive:", "".join(str(x) for x in bch.primitive.all_coeffs()))

elif args.decode:

message = args.decode

bitstring = [int(a) for a in message]

chunks = [

bitstring[bch.n*i:bch.n*(i+1)] for i in range((len(bitstring) + bch.n - 1) // bch.n)

]

decoded = [bch.decode(chunk) for chunk in chunks]

decoded_string = "".join(["".join([str(bit) for bit in chunk]) for chunk in decoded])

padding_length = len(decoded_string) % 7

decoded_string = decoded_string[:-padding_length] if padding_length>0 else decoded_string

decoded_chunks = [

decoded_string[7*i:7*(i+1)] for i in range((len(decoded_string) + 7 - 1) // 7)

]

result = bytes([int(chunk, 2) for chunk in decoded_chunks])

print(result.decode("ascii"))
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if __name__ == "__main__":

main()
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