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Abstract

In this mini-project, we will explore different theoretical and practical results in Lambda Calculus.

In Question 1, we will aim to show that, although leftmost reductions can always find a S-normal form
for a A-term, this reduction may not be efficient: through a few subparts, we build up to a result which
states that, with respect to the size of the A-term, leftmost reduction pathways can grow to be quadratic
in length while the optimal pathway will remain at most linear in length. This is an interesting result,
as it shows that the length of the leftmost reduction path can be used to show computability results
but may not be applicable to reason about complexity, as its length can be longer than optimal.

In Question 2, we will build various arithmetic and mathematical operations within A-calculus and
show how they are defined. While we know from the lectures that all computable functions are \-
definable, these constructions give insight on how exactly such operations are implemented recursively,
as opposed to the standard imperative manner many programmers are familiar with.

Finally, in Question 3, we will define various data structures and implement a larger project, to
ultimately show that DFAs and their related operations can be implemented in A-calculus. This
construction also serves as a proof that A-calculus is strictly more expressive than DFAs and regular
languages, as the latter can be implemented in the former.

Throughout this mini-project, we will formally prove why each A-term that we define indeed reduces to
the right term. In addition, in Questions 2 and 3, we will provide examples of terms with their inputs
and what they reduce to. This is interesting to see in addition to the formal reasoning provided in the
theorems and proofs. To evaluate the A-terms, we will use the 1calc tool available at https://github.
com/ryspark/lcalc. The A-terms that we will be evaluating for questions 2 and 3 can be found in
Appendices A and B, respectively. Note that these appendices have the directive #import "common"
at the beginning. This simply allows us to use common terms that we have seen in lectures, such as
ISZERQ, when defining our other terms. However, any terms that have not been defined during the
course are re-defined in the appendices.


https://github.com/ryspark/lcalc
https://github.com/ryspark/lcalc

Question 1

In this question, we will be discussing the difference in length between the optimal and leftmost
reduction paths for S-normalisable terms. Note that we will be indicating leftmost reductions with the

standard arrow - and optimal reductions with the new notation 2.

For every natural number k, find a S-normalisable term ¢ such that the leftmost reduction
sequence starting at ¢ is exactly k steps longer than the optimal reduction sequence.

To define such a term, we will define a term that repeatedly duplicates a term (ii). The idea is that,
if the duplication is done first in the leftmost reduction, then it will take longer to reduce all of the
terms than if the term (ii) is reduced first and then the duplication is done.

Definition 1.1: Term with an additively longer leftmost reduction sequence

For any k € N, let ¢, = (Az.gx ... z)(ii)
k+1 times

Theorem 1.2: Correctness of

For any k € N, the leftmost reduction sequence from ¢ is exactly k steps longer than its optimal
reduction sequence.

Consider the case when k = 0.

to = (Az.x)(ii) = i(ii) — ii — i. While there are two ways to reduce the original expression
i(ii), they both result in the same result. Thus all reduction pathways have the same length,
as required.

Now let k£ > 0.

ty=Az.zgz ... x)(ii)

k+1 times
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k+1 times k times k times

In the optimal reduction case, we use one step to reduce (ii) to i, one step to apply the dupli-
cation function to i, and then k steps to reduce all of the applications of i to just one for a total
of k + 2 reduction steps.

In the leftmost reduction, we use one step to apply the duplication function to (ii), and then
2k + 1 steps to reduce the remaining pairs of identity terms down to one remaining one for a
total of 2k + 2 reduction steps.

The difference between these two is 2k + 2 — (k + 2) = k, as required. O




For every natural number k, find a fB-normalisable term t such that the leftmost reduction
sequence starting at ¢ is at least k times longer than the optimal reduction sequence.

We can expand on the idea of part (a). In Definition 1.1 we replicated the term (ii) a number of times.
Here we will do the same, but also replicate the replicated sequence to obtain a multiplicative increase
in the number of reduction steps of the leftmost reduction path.

Definition 1.3: Term with a multiplicatively longer leftmost reduction sequence

For all natural numbers k, let t; = (Az.z...z)[(A\y. y...y )(ii)]
k times k+1 times

Theorem 1.4: Correctness of ¢

For any k € N, the leftmost reduction sequence from ¢ is at least a factor of k£ longer than its
optimal reduction sequence.

When k = 0, the theorem holds trivially as any reduction sequence is at least 0 times as long as
the optimal reduction sequence.
When k£ > 0, observe that

tr=Az.z...x)[(A\y. y...y )(ii)]

k times k+1 times
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For the optimal reduction pathway, we require one step to reduce (ii) to i, one step to apply
the replication function with parameter y, k steps to reduce the i terms, one more step to apply
the replication function with parameter z and finally k — 1 steps to reduce all of the remaining
i terms. This makes a total of 1 + 1+ k+ 1+ k — 1 = 2k + 2 reduction steps.

For the leftmost reduction path, we start by reducing the outermost duplication expression.
Then, each time we reduce an expression involving Ay we require 2k + 2 reduction steps to
reduce it to an identity, followed by one more reduction to get rid of the identity. This is
repeated k£ — 1 times, after which the last remaining expression only requires 2k + 2 steps as
the last i is not reduced. This makes for a total of 1+ (2k+2+1)(k—1)-+(2k+2) = 2k?+3k steps.

Thus, since 2k? + 3k = k(2k + 2) + k, the leftmost reduction pathway is always at least a factor
of k longer than the optimal reduction pathway. O




Let |t| be the number of nodes in the construction tree of ¢. Find a family T of S-normalisable

terms such that:
e For every n € N, there is a term ¢ € T with |t| > n;

e There is a constant ¢ € N, such that for every term ¢ € T, an optimal reduction sequence
from ¢ has a length of at most ¢ - |¢[;

e There is a constant d € N, such that for every term ¢ € T', the leftmost reduction sequence
from t has a length of at least d - |¢|?.
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We will approach this in a similar way as before, using multiplying terms to generate a sequence of
terms ¢ € T for which the optimal reduction pathway grows linearly in length and the leftmost pathway
grows quadratically in length with respect to the number of nodes in the tree of ¢.

Definition 1.5: The family T

For every integer k, let

tr=Az.z...2)(A\y.y...v) (\y.g...2)1))

k times M e k times

Then, we define the family T" as
T = {te}ilsr

Theorem 1.6: Correctness of the family T'

The family T satisfies the following conditions:
(i) For every n € N, there is a term ¢ € T with |t| > n;

(ii) There is a constant ¢ € N, such that for every term ¢ € T, an optimal reduction sequence
from ¢ has a length of at most ¢ - |¢[;

(iii) There is a constant d € N, such that for every term ¢ € T', the leftmost reduction sequence
from t has a length of at least d - |t|?.

We begin the proof by noting that the construction tree of ¢ will always have 6k + 5 nodes for
any integer k > 3. To prove this, let us draw the construction tree of ¢3:
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For k = 3, we can see from the diagram that |t3] =23 = 6-3 + 5. To get from the construction
tree of tx to txy1, we replace the leftmost leaf with the label x by the application of = to z, and
similarly for y and z, an example of which is highlighted in red in the below diagram:
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Thus, to get from t; to txi1, we remove three nodes and add in nine nodes, resulting in an
increase of 6 nodes. Hence by induction, each construction tree has |tx| = 6k + 5 nodes. Since
37 <k < oo and k becomes arbitrarily large, condition (i) holds.

The optimal reduction path will always have 3k reduction steps: one application of the
term Az.z...z to the identity, & — 1 reductions of identities, one application of the term
Ay.y ...y to the identity, K — 1 reductions of identities, one application of the term Azx.z...x
to the identity, and k& — 1 reductions of identities again for a total of 3k reductions. Thus
we can let ¢ = 1, and since 3k < 6k+5 = 1(6k+5) = c|t| for all 37 < k < oo, condition (ii) holds.

The leftmost reduction path will always have k3 + k? + k reduction steps. The reduction starts
by applying Az.x...x to its argument, which duplicates it k£ times. Then, for each of these
k duplications, Ay.y ...y duplicates its argument k times, and within each of these, A\z.z...z
duplicates the identity k times. There are then k identity reductions in each case. So, there is
a total of k3 identity reductions, k2 applications of A\z.z ...z, and k applications of \y.y...y.
Furthermore, the final group to be reduced has one fewer applications as the final identity is
not reduced but stays as the result of the computation. Hence the leftmost reduction path has
14+ k34 k% +k —1=Kk3+ k2 + k reduction steps.

We now let d = 1. Observe that the inequality k3+k2+k > 1(6k+5)? = d|tx|? holds if and only if
k > 37, which is why we impose this condition on the family 7. Hence, condition (iii) also holds.

Therefore all of the conditions of Theorem 1.6 hold and we are done. O




Question 2

In each of the below parts (a)-(f), we are required to prove that the provided function is definable and
find a term that defines it.

h1: N? & N o1(n1,n2) = ged(ny, n2)

We will define a term for ¢; by implementing the FEuclidean algorithm in A-calculus. One well-known
recursive definition of the Euclidean algorithm is the following:

def euclidean_algorithm(a, b):
if b == 0:
return a
else:
return euclidean_algorithm(b, a % b)

Listing 1: The Euclidean algorithm in Python

To implement this, we will also need to implement the modulo operator for positive integers. To do
this, it suffices to write a A-term that takes in two integers and repeatedly subtracts one from the other
until a small enough value is reached.

Definition 2.1: The modulo operator

We define the term mod as follows:
mod = y(Afnd.(ltnd)n (f (dpredn)d))

Where y is the fixed point combinator and It is the less-than operator seen in lectures.

Lemma 2.2: Correctness of mod

Given two Church numerals n and d, modn d reduces to the encoding "n (mod d)™

Proof:

The expression n (mod d) is defined as the unique number x such that 0 < z < d and z+kd = n
for some integer k.

So, to obtain x, it suffices to subtract d from n a total of k times, which we know will be achieved
when the inequality = < d holds for the first time.

The A-term mod takes parameters n and d, and compares them using the less-than operator. If
n < d, then we have reached our result and it is returned. Otherwise, the function is called re-
cursively on d predn and d, the former of which reduces to pred(pred(...(pred n)) which reduces

vV
d times

to™mn—d". O

We can now define the term ¢;. The implementation below replicates the logic outlined in Listing 1.

Definition 2.3: The term ¢;

Define the term ¢ as follows:

¢1 =y(Afab.(zero?b)a (fb(modab)))




Theorem 2.4: Correctness of ¢;

Given two Church numerals a and b, ¢; a b reduces to "ged(a, b)™

The logic is implemented based on the algorithm in Listing 1. If the second argument is zero,
the first one is returned. If the second argument is nonzero, then the function recurses with the
second argument in the first position and the first argument modulo the second in the second
position. O

\.

Let us test this term by using a few examples. For this and all future examples in this section, we will
use the 1calc tool along with the terms defined in Appendix A. Note that 1calc outputs A-terms that
it recognises, such as boolean values and Church numerals, in their readable form instead of in their
pure A-term form.

Example 2.5: Testing the term ¢;

Given the following input

PHI1 2 3
PHI1 3 2
PHI1 9 3

We get the following output

1
2
3

Thus the term works as expected on these examples.




¢2: N5 — N ¢2(n17n27n37n45n5) = ng(TL1,TL2,7’L3,7’L4,TL5)

By number theory, we know that ged is associative. That is, ged(ged(z,y), z) = ged(z, ged(y, 2)) =

ged(z, y, z) for all integers x, y, z. Thus also ged(ny, na, n3, ng, ns) = ged(nq, ged(ne, ged(ns, ged(na, ns)))).

We therefore implement the term ¢9 as follows:

Definition 2.6: The term ¢-

The term ¢9 is defined as

¢2 = Aabede.g1 a(p1b(d1c(dr1de)))

Theorem 2.7: Correctness of ¢o

Given five Church numerals a, b, ¢, d, e, the term ¢o reduces to "ged(a, b, c,d,e)™

The proof is immediate, since the A-term uses the associativity of gecd by applying the function
¢1 defined in Definition 2.3 to the input terms. O

.

Let us evaluate this term on a few examples. It should be noted that evaluating this term is already
incredibly slow, even though it has a S-normal form and eventually reduces to it.

Example 2.8: Testing the term ¢o

Given the following input

PHI2 2 2 2 2 2
PHI2 36 9 3 9

We get the following output

2
3

Thus the term works as expected on these examples.




1 n is prime

0 otherwise

¢)3:N—>N ¢3(n)={

Recall that an integer n is prime if and only if its only divisors are 1 and n itself. Furthermore, an
integer k is a divisor of n if and only if n (mod k) = 0. Thus it suffices to check the value of n (mod k)
for all integers 1 < k < n, returning 0 if any of these are divisors and returning 1 otherwise.

Definition 2.9: The terms prime and ¢3

We define ¢3 using an auxiliary term prime as follows:

o3 = An.(zero?n) T07 ((zero? (predn)) "07 (prime (predn)n))
prime = y(Afkn.(zero? (pred k) "17 ((zero? (modn k)) "07 (f (predk)n)))

Theorem 2.10: Correctness of ¢3

Given a Church numeral n, the term ¢3n reduces to "17 if n is prime and "0 otherwise.

The term ¢3 starts by checking the two edge cases, 0 and 1, which are not prime by definition. If
n is neither of these, then it begins the algorithm by passing prime the largest number smaller
than n and n itself.

The term prime first checks if k is equal to one by checking if its predecessor is zero. If it is, we
have checked all the numbers 1 < k£ < n without returning, so n is prime and we return "1
Otherwise, the term checks whether k is a factor of n using the term mod defined in Definition
2.1. If it is, then it reduces to "0 since n is not prime. Otherwise, it recurses on the predecessor
of k to test the next number smaller than k.

Thus ¢3 and prime implement the naive prime checking algorithm. O




We will use this term to check whether the natural numbers up to 10 are prime.

Example 2.11: Testing the term ¢3

Given the following input

PHI3
PHI3
PHI3
PHI3
PHI3
PHI3
PHI3
PHI3
PHI3
PHI3
PHI3

© 00 NO O W N+~ O

[E
o

We get the following output

QO OO L OFr O KF»r OO

Thus the term works as expected on these examples.
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d4: N2 5 N ¢4(n1,m2) = number of common prime factors of n; and ne

Recall from number theory that any common divisor of two integers a and b will also divide ged(a, b).
We will use this fact to implement a A-term that will iterate through all integers less than the ged of
the two inputs, and check whether they are in fact prime factors.

Definition 2.12: The terms common and ¢4

The term ¢4 is defined using an auxiliary term common as follows:

¢4 = Azy.common (¢1xy) (¢1 7 Y)
common = y(Afkn.(zero? k) "07 ((zero? (modnk)) (add (¢p3 k) (f (predk)n)) (f (predk)n)))

Where add is the term implementing addition of two integers from the lectures.

Theorem 2.13: Correctness of ¢4

Given two Church numerals a and b, the term ¢4 a b reduces to the Church numeral representing
the number of prime factors of a and b.

The term ¢4 begins by calculating the GCD of the two input numbers using the term ¢;
defined in 2.3. Since the GCD is, by definition, the greatest common factor of the two integers,
we know that there will be no larger common prime factors. In addition, since every common
factor of two integers divides the GCD, it suffices to check all the numbers less than or equal
to the GCD for primeness and divisibility.

The term common checks whether its first input k is zero. If it is, it can reduce to "0, since
there can be no smaller prime factors and 0 is not itself prime.

Otherwise, it checks whether k is a factor of the second argument n using the term mod. If it
is not, then it simply recurses on the previous value of k. However, if it is, then in addition to
recursing it calculates whether k is prime and adds the result to the value of the recursive call,
thereby adding 1 if the factor is prime as required and 0 otherwise.

Therefore, this term implements counting how many common prime factors two numbers have,
as required in the theorem. O

Again, we will test this on a few examples, which take a long time to evaluate.

Example 2.14: Testing the term ¢4

Given the following input

PHI4 2 3
PHI4 2 4
PHI4 6 6

We get the following output

0
1
2

Thus the term works as expected on these examples.

11



Length of Collatz sequence starting at n  n < 102°

0 n > 10%

¢5ZN—>N d>5(n)={

We will first implement the term collatz, which returns the next step in the Collatz sequence, after
which we will implement the main length counting function ¢s.

Definition 2.15: The term collatz

We will define the term collatz using the auxiliary functions equals?, even?, and hal f:

equals? = y(Afab.(zero? a)(zero? b)((zero?b) f (f (preda) (predb))))
even? = y(Afn.(zero?n)t (not (f (predn))))
half = y(Afkn.((equals?(add k k)n) k (f (predk)n)))
collatz = An.(even?n) (half nn) (succ(addn (addnn)))

Lemma 2.16: Correctness of collatz

The term equals? checks whether two Church-encoded numbers a and b are equal.

The term even? evaluates to t if its parameter n is even and f otherwise.

The term half takes in two values, k& and n, where n is even, and evaluates to "5 . The value
of k must be any value larger than 7, so it suffices to use k = n and evaluate half nn.

Finally, given a Church numeral n, the term collatz n reduces to "5 if n is even and 3n + 1 if
n is odd.

The term equals? returns the correct result: if a is zero, then it returns whether b is zero or
not; if a is not zero but b is zero, then it returns false; otherwise, it repeats the check for the
predecessors of the numerals.

The term even? evaluates to t if its input is "0". For all subsequent numbers, it evaluates to
the negation of the result for the predecessor, which by induction is t for even numbers and f
for odd numbers.

The term half takes in two values, k and n. If kK + k = n, it reduces to k as it has found the

value k = 5. Otherwise, it will repeat the check for the predecessor of k. The term half kn
is B-normalisable if and only if ¥ > 5 and n is even. Thus we shall only evaluate half nn for

even values of n in the term below.

Finally, the term collatz takes in a term n as a parameter. It checks whether the encoded integer
is even using the term even?, and evaluates half nn if it is, since this term is S-normalisable in
this case. Otherwise, it evaluates to "3n + 17 using the successor term and the addition of the
term n three times. O

We can now implement the required term in a straightforward way. Observe that the number 10%° can
be encoded as the Church numeral 710207,



Definition 2.17: The term o5

The term ¢5 is defined as follows:

y(Afn.(ltn 710207 ((zero? (predn)) 707 (succ (f (collatzn)))) (T07))

Theorem 2.18: Correctness of ¢5

Given a Church numeral n, the term ¢5n reduces to the Church numeral corresponding to the
length of the Collatz sequence starting at n if n < 10?°, and "0 otherwise.

If the input term n for the term ¢s5 is more than 10%°, it immediately returns 0 as required.
Otherwise, it checks whether the Collatz process has reached the end by checking if n = 1 by
checking if its predecessor is zero: since zero never appears in any Collatz sequence, the fact
that pred™07 = "07 is of no importance. If it is, then the term reduces to "0 as required.
On the other hand, if the argument is not one, then the term will reduce to the successor of
the value returned by the recursive call with the argument collatz n, which results in the term
counting the number of steps in the Collatz sequence starting at n.

In addition, since the Collatz conjecture has been verified for all values of n < 1020, the defined
term is S-normalisable. O

We will now test the term on the integers from 1 to 5. Note that including the Church numeral for 10%°
would not be practical for these tests, as it would take up too much memory and lead to extremely
large runtimes for the reduction simulation. As we know that the Collatz sequences for these values
never exceed 16, we have replaced 10?0 with 17 in this instance.

Example 2.19: Testing the term ¢5

Given the following input

PHI5 1
PHI5 2
PHI5 3
PHI5 4
PHI5 5

We get the following output

a NN = O

Note that the Collatz sequences in these test cases are the following:

1

21

310516 8421
421
516 84 2 1

Thus the term works as expected on these examples.

,
\




g : N2 5 N ¢e(ni,n2) = |{TL eEN:0<n<ngAgs(n) = n2}|

We will again rely on a brute-force approach, enumerating all values of n which are at most n; and
checking whether the previously defined term ¢5n evaluates to ns.

Definition 2.20: The term ¢g

The term ¢g is defined as follows:

o6 =y(Afnt.(zero?n) 07 ((equal? (p5n)t) (succ (f (predn)t)) (f (predn)t)))

Theorem 2.21: Correctness of ¢g

Given two input Church numerals n and ¢, the term ¢gnt evaluates to

"{k € N: 0 < k < n A ¢5(k) = t}]

If the input term n is zero, then the term evaluates to "0™.

Otherwise, it checks whether the term ¢5n and t are equal using the equal? term. If they are
not, then the term recurses on the previous value of n. If they are, then the term recurses in
the same way but also evaluates to the successor of the result of the recursion, thereby counting
the number of times when the condition holds. O

Again, we can test this term on a few small examples.

Example 2.22: Testing the term ¢g

Given the following input

PHI6 2 1
PHI6 3 1
PHI6 3 2

We get the following output

1
1
0

Thus the term works as expected on these examples.




Question 3

In this question, we will be encoding Deterministic Finite Automata (DFAs) in Lambda Calculus.

Suppose @ C N, i.e. every state is identified by a natural number.
Devise an encoding for strings and DFAs in A-calculus.

We will begin constructing the encoding by defining some auxiliary data structures that will come in
useful.

Recall from lectures that a pair (s,t) was defined as A\f.f st. For convenience, we will also define the
pairing function pair = Azyf.f xy, which when given two arguments s, ¢ will return the pair (s,t) as
defined above. We will extend this to a list of items by pairing an element of a list with the tail of the
list as follows:

Definition 3.1: Lists and list operations

e A list is defined recursively as either the end indicator, defined as the identity term
i = A\z.x, or a pair (a,l) where a is any term and [ is another list.

e The term head is defined as head = Ax.x t
e The term tail is defined as tail = A\z.x f
e The term empty? is defined as empty? = Al.l (Azy.t) f

e The term index is defined as index = Ni.head [i tail ]

It is easy to see that the head and tail terms do what is expected: from lectures, we know that
(s,t)t = s and (s,t) f = t. By definition, the first element is always the head of the list and the second
element is its tail. Proving that the last two terms work as intended is slightly more complicated, so
we will state those as lemmas.

Lemma 3.2: The term empty?

When applied to a list, the term empty? checks whether the list is empty or not and returns
true or false accordingly. That is, it satisfies the following rules:

empty? i=1t
empty? (s,t) =f

Proof:

We will prove each case separately. For the former case,
empty? i = (ALI(Azy.t)ff)i

i(Azy.t)ff

= (Azy.t)ff

= (\y.t)f

=t




On the other hand, for any pair (s, t),
empty? (s,t) = (ALl Azy.t) £ ) (Af.fst)

= (Af.fst)(Axy.t)ff
= ((Axy.t)st)ff

O
Lemma 3.3: The term index

The term index takes in a list and the Church encoding of an integer, and returns the element
at that position in the list. In this case, the list is zero-indexed, i.e. the first item in the list has
index 0 and so on. For indices longer than the length of the list, the behaviour of this term is
undefined.

Formally, the term satisfies the following property:
index (a1, (az, (..., (an,1)))) "1 =a;

where 0 <4 < n is an integer.

The term works since the Church encoding of an integer ¢ applied to a function will evaluate
that function 4 times on its parameters.

index <a17 <a27 (, <an) 1>>>> M= ()‘li~h6ad [7' tail l]) <a17 <a27 <7 <an71>>>> i
= head (ri—' tail <a1, <a27 <7 <ana l>>>>)

= head | tail(tail(...(tail (a1, (a2, (..., (an,1)))}))))
¢ times
= head (ai, (ai+1, <7 (ana 1>>>>)))

:ai

We can now move on to defining the encoding of strings and DFAs in A-calculus.
We will begin with strings. As the alphabet ¥ = {0, 1}, it suffices to define two elements that will
represent these numbers and create a list of them in order.

Definition 3.4: Encoding of a string

Let s =ag...ay be a string, where a; € {0,1} for all i. Define the encoding of each element a;
as
'—a[‘ _ f, if a; = 0
t, if a; = 1

Then, the encoding of the string s is defined as the list

Ts7=(Tap™, (..., (Ta,", 1))

Now we can encode DFAs using the above definition as a basis. First, observe that the question states

16



that the state set @ C N. Without loss of generality, we may assume that, in fact, @ = {0,...,n} for
some integer n. This is because any finite state set can be enumerated and relabelled to consecutive
integers, with the transition function 4, initial state g, and accepting state set F' relabelled accordingly
with no effect on the structure of the DFA.

Definition 3.5: Encoding of a DFA

A deterministic finite automaton A = (Q, d, qo, F') can be encoded as a list
I—A—I = <I—q0_|’ <I_5—I’ <|_F—l’ i>>>
where the components "¢p ', "0, and "F' are defined below.

For "qo ', we simply consider ¢y as an integer and take its Church encoding.

For "6, we will consider each state separately and combine the encodings into a list. Recall
that § : @ x {0,1} — @ where Q@ ={0,...,n}. Let a € Q be a state. Then, define a A\-term

do = ("(a,1)7, "0(a,0)7)

where the expressions "d(a, 1) and "d(a,0)" refer to the Church encodings of the integers
returned by the function 6. We can now define the list "0 as

67 = (o, (01, (-, (0n, 1))))

For "F, we will construct a list containing a boolean A-term for each state in order, where t
indicates that the state is accepting and f indicates that it is not. First, for all integers i € Q,

let
P t, ifieF
f, ifigF

Then, we can define " F'" as a list of these elements:
CF = (Fo, (F1, (.., (Fp, 1))))

This concludes the definition of the encoding of a DFA A.

Let us conclude this exercise by giving an example of encoding a string and a DFA using this definition.

Example 3.6: Encoding a string and a DFA

Consider the string s = 001001 and the following DFA A:

1 1 1
0
O—C__©®
0
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Using our encoding, we get the following:

TsT = (£, (£, (&, (£, (£, (£, )
"q0 ' ="0"=Aryy
C6T = ((T07,T17), ((T17,727), (727,717, 1))
TF7 = (t,(f,(t,1)))
CTAT = (Tqo ™, (767, (TF,i)))
(07, (((T07, 1), (M1, 727), ({727, 1), i), ({6, (F, (8, 1)), 1))

This is equivalent to the follwing A-calculus code interpreted by lcalc, where the terms PAIR
and I are defined in Appendix B.

str = PAIR F (PAIR F (PAIR T (PAIR F (PAIR F (PAIR T I)))))
q0 =0

delta = PAIR (PAIR 0 1) (PAIR (PAIR 1 2) (PAIR (PAIR 2 1) I))
final = PAIR T (PAIR F (PAIR T I))

Autom = PAIR qO0 (PAIR delta (PAIR final I))
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Find a term ¢ such that

ABEt TAT TsT=true if A accepts s
AMBEt TAT TsT =false if A does not accept s

We are required to find a term ¢ that simulates executing the DFA and returning its result. We will
do this in several steps, building up to the full term t.
First, we will define a term that will allow us to simulate one step of the DFA:

Definition 3.7: The step function

The term step is defined as
step = A\gox.(index 6 q)x

Lemma 3.8: Correctness of step

Given a state ¢, the encoded transition function §, and a symbol x which is either t or f, the
term step return a Church-encoded integer representing the next state.

First, the term applies index to & and g to get the ¢'® element of the list §, i.e. the pair
("6(q,1)7,70(q,0)) of transitions out from the state ¢. It then applies this pair to x.

If z = t, then we know that this is an encoding of the symbol 1 and ("d(q,1)7,7(g,0) Nt =
"§(g,1)" by properties of pairs.

Similarly, if z = f, we know that it is an encoding of the symbol 0 and ("6(g,1)7,7d(g,0) ) f =
T5(q,0)™. O

Next, we want to define a term that will allow us to simulate arbitrarily many steps of the DFA by
repeatedly applying step.

Definition 3.9: The run function

The run function is defined as follows, and uses an auxiliary run’ function to execute the actual
recursive algorithm on the decoded parameters:

run = A\As.run’ (head A) (head (tail A)) s
run’ =y (Afqds.(empty? s) q (f (stepqd (head s)) § (tail s)))

Where y = Af.(Az.f (xz)) (Az.f (x x)) is the fixed point combinator seen in lectures.

Lemma 3.10: Correctness of run

Given the encoding of a DFA A and an encoded string s, the term run return a Church-encoded
integer representing the final state of execution after the DFA has processed all of the symbols
from s starting at state qp.

The run function first decodes the parameters gg and § from the DFA A by taking the first and
second elements of the list encoding. It then passes these parameters to run’.
The function run uses the Y-combinator to define itself recursively. We can consider the following




syntactically invalid but semantically equivalent function
run’ = \gds.(empty? s) q (run’ (step qd (head s)) § (tail s))
Thus, run’ takes in a state ¢, a transition function 4, and a string s.

If we have exhausted all of the elements in the string, then s = i, and empty? s = t. In this
case (empty? s)q (run’ (stepqd (heads))d (tail s)) = tq (run’ (stepqd (head s))d (tail s)) = q.
Thus run’ will terminate and return the current state ¢, which is now the final state.

If s still has symbols remaining, then s = (z,s’) for some string s’ and thus empty?s =
f. So (empty?s)q(run’ (stepqd (heads))d (tail s)) = £q(run’ (stepqd (heads)) o (tail s)) =
run’ (stepqd (head s)) 0 (tail s).

This will execute step defined in Definition 3.7 to get the next available state, and recursively
call run’ on the next state and the tail of s to advance through the whole string.

In every recursive execution of run’, we are reducing the length of the list s and handle the
case when s is empty. Hence the algorithm will terminate and thus the terms run’qd s and
run "A7 "s are f-normalisable when given valid encodings. O

\.

Finally, we are ready to define the term ¢ demanded by the question. This will work by running the
run function and indexing the encoding of the accepting set F' with the result.

Definition 3.11: The term ¢

The term ¢ is defined as follows:

t = Ms.index (head(tail(tail A))) (run A s)

Theorem 3.12: Correctness of ¢

Given a valid encoding of a DFA A and a string s, the term ¢ will return t if A accepts s and f
otherwise.

Proof:

First, observe that by Lemma 3.10 the term run A s will reduce to the Church encoding of the
final state ¢ after running the DFA over all of the symbols in s. Furthermore, head(tail(tail A)))
will reduce to the encoding " F'' of the set of accepting states.

Now recall that by Definition 3.5 we defined "F ™ as a list, where the i element is t if i is an
accepting state, and f otherwise. Thus it suffices to find the element at the index of the final
state ¢, which is done using the previously defined term index, and we are done. O

We may now test our encoding on a few examples of a DFA and input string. Note that the source
code is again executed by the 1calc A-calculus interpreter and is available in Appendix B.

Example 3.13: Testing the term ¢

We will first apply the term ¢ to the automaton encoded in Example 3.6. With the following
input

t Autom str
We get the following output:
TRUE
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Since lcalc displays the term Axy.x as TRUE, the term ¢ works correctly in this case.

We may also modify the terms slightly. Let us evaluate the above term, but change the definition
of str to the following:

str := PAIR F (PAIR F (PAIR T (PAIR F (PAIR F (PAIR T (PAIR F I1))))))
The output is then
0

Where 0 is the way lcalc displays the term Azy.y.

Finally, let us change some more properties of the automaton: we evaluate the original string,
but we now start at state 1, and only state 1 is an accepting state.

str = PAIR F (PAIR F (PAIR T (PAIR F (PAIR F (PAIR T I)))))
q0 =l

delta = PAIR (PAIR O 1) (PAIR (PAIR 1 2) (PAIR (PAIR 2 1) I))
final = PAIR F (PAIR T (PAIR F I))

By following the DFA diagram in the previous example, we expect the automaton to terminate
in state 1 and thus accept the string. Indeed, when evaluating this term we get the following
output:

TRUE

Thus the term works as expected on these examples.
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Find a term fepmpry such that

AB & tempty "AT =true if A does not accept any string
AB & tempty "AT = false if there is at least one string accepted by A

By automata theory, we know that the language of a DFA A is empty, L(A) = &, if and only if there
does not exist a path from the initial state gy to any state ¢ € F' when considering the states and
transitions 0 as a graph.

We will implement a depth-first-search (DFS) algorithm in A-calculus to traverse the structure of the
DFA and return the appropriate result as outlined in the question.

First, to implement a DFS algorithm, we must design a data structure to store which states we have
visited and which we have not, and to be able to read and write to this data structure. The simplest
way to do this is using a list containing the Church-encoded numerals of the visited states in any order.
Then, to append a new state to this list, we can add it to the front of the list. To check whether a
state has been visited, we traverse the list and see whether any of the numerals match the one we want
to check. This idea is made more formal in the following definition:

Definition 3.14: List of visited states

A list of visited states is any list containing Church numerals corresponding to states in any
order.
The terms add and visited? are defined as follows:

add = \qu.pair qv
visited? = y(Afqu.(empty? v) £ ((equals? q (headv))t (f q (tailv))))

Where equals? was defined in Definition 2.15, y is the Y-combinator, and pred is the predecessor
function from the lectures.

Lemma 3.15: Correctness of add and visited?

When given a state ¢ and list of states v, the add function adds the state to the front of the list.
When given a state ¢ and list of states v, the visited? function checks whether the value ¢ is an
element of the list v, returning t if so and f otherwise.

\.

The term add is correct, as prepending an element to a list is equivalent to returning a pair of
an element and a list by Definition 3.1.

The term wvisited? works by recursively iterating over a list v. If the list is empty, it returns f,
as we know that g was then not a member of the list. If the list is nonempty, it checks whether
the first element of the list is equal to ¢ using the term equal?, returning t if so and recursing
otherwise. Thus, visited? also returns the correct result. O

We can now define the tern t.y,ps, using an auxiliary term df s that will recurse through the states of
the DFA using the transition rules and check whether any of the states are reachable.
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Definition 3.16: The term %,y

The term te,pty and auxiliary term df s are defined as follows:

tempty = AA.df s (head A) (head(tail A)) (head(tail(tailA)) i
dfs = y(AfqgdFv.(visited? qv) t ((index F ¢) f (and
(f (stepqdt)d F (addqv))
(f (stepqof)d F (addquv))
)

where the term and = Aab.a bf is the encoding of the logical AND function in A-calculus.

Theorem 3.17: Correctness of te,,pty

Given the encoding of a DFA A, the term tey,py Will reduce to t if the language recognised by
the DFA is empty and f otherwise.

The term tepmpty simply splits the encoding of the DFA A into qo, 6, and F, and passes them
to the term dfs along with an empty list i. Thus it suffices to show that dfs is implemented
correctly.

The term dfs is a recursive term which implements the following logic: iterate through all
possible paths in the DFA, and return true for all paths which loop to an already existing state
without passing through an accepting state, and false for the paths that at some point reach
an accepting state. We know that if at least one of these paths returns false, then there exists
a path to an accepting state and the language of the DFA is nonempty and we return false.
Otherwise, if all paths return true, we can return true as no path has reached an accepting
state and thus the language is empty.

During each iteration the term checks whether it has already visited the state that it has been
passed using the visited? function defined in Definition 3.14. If it has, then it can return t as
the path it has taken did not result in any accepting states before looping back. If it has not,
then it checks whether the state is in the set of accepting states using the same method as in
Definition 3.11 and returns f if it is. Otherwise, it recursively calls itself with the next state
along both possible paths, adding the current state to the list of visited states for each call,
with the results combined together using the and operator.

Thus the algorithm implements the logic as desired and tey,pt,, works correctly. O

Let us test this term on a few examples.

Example 3.18: Testing the term t.;,,

Let us again use the example DFA defined in Example 3.6.
Since the language of the DFA is nonempty as shown in Example 3.13, we expect that the below
term evaluates to A\ry.y:

tempty Autom
And indeed, evaluating this term yields

0
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As expected.

We can now modify the automaton to test the negative case. First, let us modify the set of
accepting states to be empty:

q0 =0

delta = PAIR (PAIR 0 1) (PAIR (PAIR 1 2) (PAIR (PAIR 2 1) I))
final = PAIR F (PAIR F (PAIR F I))

Autom = PAIR qO (PAIR delta (PAIR final I))

Evaluating the above term now yields
TRUE

As expected.

Finally, let us change the term such that there do exist accepting states but they are inaccessible
from the starting state:

q0 =0

delta = PAIR (PAIR 0 1) (PAIR (PAIR 1 0) (PAIR (PAIR 2 1) I))
final = PAIR F (PAIR F (PAIR T I))

Autom = PAIR qO (PAIR delta (PAIR final I))

The term tempty Autom now also reduces to
TRUE

Thus the term t¢;,,t, works correctly on these examples.
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Find a term ?p,¢ i, such that

AB & tprepic "AT Ts7 =true if there is a string s’ for which A accepts ss’

AB & tprepic "AT TsT =false if there is no string s’ for which A accepts ss’

By automata theory, we know that for any DFA A and string s, there exists a string s’ such that A
accepts ss’ if and only if the language of the automaton A’ = (Q, 9, q1, F) is nonempty, where ¢; is the
state reached after running s on automaton A.

Thus it suffices to simulate the execution of our original automaton using the term run and then use
the term t¢y,pty to decide the problem.

Definition 3.19: The term ¢, s,

The term ¢, f;; is defined as
tprefia: = )\AS-HOt(tempty (pair (Tun A 8) (taz'l A)))

where not is the negation operator from the lectures defined as not = Az.z ft

Theorem 3.20: Correctness of t,,.yiz

Given an encoding of a DFA A and a string s, the term t,,¢ i, Will reduce to t if there is a string
s’ such that A accepts ss’ and f otherwise.

The term run A s reduces to the state ¢; obtained after running the automaton A on s. The
pairing function then constructs a new automaton, which is the same as A apart from the initial
state go, which is now set to g;. This is then given to the term te;,pt,, which will check whether
the resulting automaton has an empty language, and the negation of this result is returned as
if the language is empty, there does not exist a string s’ and vice versa.

Let us test this term on a slightly different example DFA to before.

Example 3.21: Testing the term ¢, ;.

For this test, we will use the following DFA:

1 0,1
0
OB OO
1

That is, this is a DFA that has a single trap state 2, from where no further accepting states can
be reached. This DFA is encoded as follows:

q0 =0

delta = PATIR (PAIR O 1) (PAIR (PAIR 0 2) (PAIR (PAIR 2 2) I))
final = PAIR T (PAIR F (PAIR F I))

Autom = PAIR qO0 (PAIR delta (PAIR final I))




We will test this by evaluating the following terms, only the last of which should end up in the
trap state:

tprefix Autom I
tprefix Autom (PAIR F I)
tprefix Autom (PAIR F (PAIR F I))

And indeed, when we evaluate these terms, we get the following S-normal forms:

TRUE
TRUE
0

Thus the term works as expected on these examples.
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Find two terms p and ¢ such that for all DFAs A and strings s, we have the equalities

not (tempty l—A—l) = tprefi:c rAT b

not (tprefiz " A7 TST) = tempry(q TAT Ts7)

We can consider the two terms p and g separately, as they do not appear in the same term.

For p, we observe that the language accepted by A is nonempty if and only if there exists a prefix s’
for the empty string e such that A accepts s’. Thus, the encoding i of the empty string should work
for p.

For g, we can use the same observation as we made in part (d): there exists a suffix for a string s
which is accepted by A if and only if the language recognised by the automaton A" = (Q, 9, q1, F) is
nonempty, where ¢ is the state obtained after running A on the input s. Equivalently, there does
not exist such a suffix if and only if L(A) = @. Thus the term ¢ should run A on s and make a new
automaton with a different starting state, just as we did in Definition 3.19.

Let us prove these relationships formally.

Definition 3.22: The terms p and ¢

The terms p and ¢ are defined as follows:

p=i
q = Ms.pair (run A s) (tail A)

Theorem 3.23: Correctness of p and ¢

The terms p and ¢ satisfy the equalities

not (tempty ’_A—l) = tprefiz rAT p

not (tprefic "A7 T87) = tempty(q TAT Ts7)

Proof:

For p, consider the following sequence of S-equalities:

tprefix rAT p= tprefi:c TAT i
= not(tempry (pair (run "A7 i) (tail "AT)))
= N0t (tempty (pair Tqo” (tail "AT)))

= not(tempty A7)
For g, simply expand the definition of ¢, i, to obtain the result:

not (tyrefiz " AT Ts7) =
= not ((AAs.not (tempty (pair (run A s) (tail A)))) "A™ Ts7)
= not (Not(tempty (pair (run "A7 Ts7) (tail TAY)))) =
= tempty (pair (run AT Ts7) (tail TAT)) =
= tempty (AAs.pair (run A's) (tail A) "A7 Ts7)

— tempty (q mAT I—s—l)




As a small note, the equality not(not z) = x holds for all boolean A-terms x since

not(nott) = (Azx.xft) (A\y.yft)t) = Az.zft)f =t
not(notf) = (\z.xft) (A\y.yft)f) = Azaxft)t=f
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Conclusion

In this mini-project, we have proven theoretical results related to A-calculus, as well as defining func-
tional AS-terms in practice. We have tested all of the terms that we defined, and formally proved that
they work as intended.

One limitation of the testing was that evaluating A-terms is slow. In practice, evaluation only works
on small examples with small integers, as anything larger is too slow to evaluate in a reasonable time-
frame. For example, Church numerals are defined in a very inefficient way that makes it easy to define
A-terms, but storing a number such as 10?° as required in Question 2 would be impractical in the
real world. This meant that tests had to be limited to small cases and were by no means exhaustive.
Nevertheless, one benefit of A-calculus is that it yields itself well to mathematical analysis, and we
were able to construct formal proofs of correctness without needing to resort to tests.

Overall, by establishing theoretical results, defining useful terms, and embedding a whole different
model of computation (DFAs) in A-calculus, we have shown its power as a Turing-complete model
of computation and the ways in which it allows us to reason differently about programming and
algorithms.
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Appendix A: Lambda terms for Question 2

#import "common"

MOD =Y (Mf.2n.\d.(<nd) n (f (d PRED n) d))

PHI1 =Y (Af.Xa.\b.(ISZERO b) a (f b (MOD a b)))

PHI2 = Aa.\b.Ac.\d.\e.PHI1 a (PHI1 b (PHI1 c¢ (PHI1 d e)))

PRIME =Y (Af.Xk.)n.(ISZERO (PRED k) 1 ((ISZERO (MOD n k)) O (f (PRED k) n))))

PHI3 = An.(ISZERO n) 0 ((ISZERO (PRED n)) O (PRIME (PRED n) n))

COMMON := Y (Af.)k.)n.(ISZERO k) O ((ISZERO (MOD n k)) (+ (PHI3 k) (f (PRED k) n))
(f (PRED k) n)))

PHI4 = Ax.)\y.COMMON (PHI1 x y) (PHI1 x y)

T = Ax.\y.x

F = AX.\y.y

NQOT = \x.x FT

EQUALS := Y (Af.)\a.\b.(ISZERO a) (ISZERO b) ((ISZERO b) F (f (PRED a) (PRED b))))

EVEN =Y (Af.An.(ISZERO n) T (NOT (f (PRED n))))

HALF =Y (M\f.Xk.\n. ((EQUALS (+ k k) n) k (f (PRED k) n)))

COLLATZ := An.(EVEN n) (HALF n n)(SUCC (+ n (+ n n)))

PHI5 =Y (AMf.Mn.(< n 17) ((ISZERO (PRED n)) 0 (SUCC (f (COLLATZ n)))) 0)

PHI6 =Y (\f.\n.)\t.(ISZERO n) 0 ((EQUALS (PHI5 n) t)(SUCC (f (PRED n) t))(f (PRED n) t)))
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Appendix B: Lambda terms for Question 3

#import "common"

I 1= AX.X
1= AX.AY.X
F = AX.AY.y
PAIR = Ax Ay AEL(f x y)
HEAD = Ax.x T
TAIL = Ax.x F
EMPTY = A1.1 (Ax.\y.T) F F
INDEX := A1.Ai.HEAD (i TAIL 1)
step := Aq.Ad.)x.(INDEX d q) x
runp := Y (Af.\q.\d.As. (EMPTY s) q (f (step q d (HEAD s)) d (TAIL s)))
run := M.As.runp (HEAD A) (HEAD (TAIL A)) s
t := M .\s.INDEX (HEAD (TAIL (TAIL A))) (run A s)
EQUALS := Y (Af.)a.Ab.(ISZERO a) (ISZERO b) ((ISZERO b) F (f (PRED a) (PRED b))))
ADD := Aq.AV.PAIR q v

VISITED := Y (A\f.\q.\v.(EMPTY v) F ((EQUALS q (HEAD v)) T (f q (TAIL v))))
AND := X\a.\b.a b F

dfs = Y (Af.Aq.A\d.Ax.Av. (VISITED q v) T ((INDEX x q) F (AND (f (step q d T) d x
(ADD q v)) (f (step q d F) d x (ADD q v)))))

tempty := AA.dfs (HEAD A) (HEAD (TAIL A)) (HEAD (TAIL (TAIL A))) I

NOT = Xx.x F T

tprefix := AA.As.NOT (tempty (PAIR (run A s) (TAIL A)))
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